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ABSTRACT

The performance of uniform threshold quantization subject to an
entropy constraint is studied for a sum of two and three indepen-
dent zero-mean memoryless Laplacian sources. Both symmetric and
asymmetric quantizers are considered, and approximate parametric
expressions for the operational rate-distortion functionR(D) are ob-
tained for all rates. In particular, the low rate regime (rates below 1
bit per sample) is considered and simpler expressions for R(D) are
derived. It is envisioned that these expressions will facilitate rate
estimation in practical Wyner-Ziv coding with low complexity en-
coder.

Index Terms: Laplacian sources, rate-distortion, quantization,
Wyner-Ziv coding.

1. INTRODUCTION

In this paper we describe a scalar quantizerQ defined on the real line
by two sequences of real numbers: {xk}∞k=−∞ and {yk}∞k=−∞. To
quantize a real number x, the quantizer Q simply finds an index
k∗ = Q(x) such that xk∗ < x ≤ xk∗+1, and reconstructs x as yk∗ .
For this reason, {xk} are called threshold levels, and {yk} are called
reconstruction levels. In a special case when there exists a constant
Δ > 0 such that xk+1 − xk = Δ for all k, the quantizerQ is called
a uniform threshold quantizer. If in addition xk = kΔ, Q is called a
uniform threshold symmetric quantizer.

If Q is applied to a random variable X , its performance can be
analyzed by the rate

HQ
Δ
=H(Q(X)), (1)

whereH(Q(X)) denotes the entropy of the random variableQ(X),
and the average distortion DQ incurred in the quantization process.
In most practical applications, the distortion of interest is the mean
square error, i.e.,

DQ
Δ
=E(X −Q−1(Q(X)))2, (2)

where the inverse mapping Q−1(k) Δ=yk for any integer k, and E
stands for standard expectation. Throughout this paperDQ refers to
mean square error unless specified otherwise.

The operational rate-distortion performance of uniform thresh-
old quantization for a single source has been studied extensively in
the literature of traditional lossy source coding. However except for
some very special cases, the research has been mostly relying on
numerical approaches [1]. One of the few exceptions is the perfor-
mance analysis of uniform threshold quantization for memoryless
Laplacian sources [2], [3], where analytical results were derived.
Specifically, for memoryless Laplacian sources, uniform threshold

quantizers were shown in [2] to satisfy the necessary conditions for
optimality. In the same paper, Berger also provided parametric equa-
tions to analytically calculate HQ and DQ of a uniform threshold
symmetric quantizer Q for a zero-mean Laplacian source. Paramet-
ric expressions forHQ andDQ whenQ is a uniform threshold quan-
tizer but not symmetric were derived in [3].

In this paper, we aim at deriving parametric expressions of HQ

and DQ for a sum of independent memoryless Laplacian sources.
Formally, let N , N ′, and N ′′ be Laplacian random variables inde-
pendent each of other. For convenience, throughout this paper we as-
sume thatN ,N ′, andN ′′ are all with zero mean. LetX = N +N ′

or X = N + N ′ + N ′′. We are interested in the operational rate-
distortion performance of uniform threshold quantization, both sym-
metric and asymmetric, for the source {Xi}∞i=1, where each Xi,
i ≥ 1, is an independent copy of X . Clearly, the {Xi}∞i=1 can
be regarded as a sum of independent memoryless Laplacian sources.

Our interest in analyzing the performance of uniform thresh-
old quantization for the sum of independent memoryless Laplacian
sources is motivated by, apart from pure theoretical curiosity, the
following observations. Recently we have seen surging interest in
lossy source coding with side information available only to the de-
coder, also called Wyner-Ziv coding for brevity [4], One motivating
factor of such interest is the prospect that one can build compres-
sion systems using Wyner-Ziv coding with low-complexity encoders
that are ideally suited for applications like distributed source coding
or asymmetric video compression [6]. To make Wyner-Ziv coding
practical, a critical problem is how to efficiently estimate the achiev-
able compression rates on the encoder side as the encoder does not
have access to the side information. In order to address this prob-
lem, we see that on the one hand, in these applications of Wyner-
Ziv coding, uniform threshold quantization is often a natural choice
due to its simplicity and low computational complexity; and, on the
other hand, empirical evidence shows that the noise in the channel
between the source and the side information in these applications
demonstrates behavior between Laplacian and Gaussian, and is of-
ten better modeled by a sum of independent memoryless Laplacian
sources. Clearly when the encoder complexity is concerned, numeri-
cal approaches to estimating the achievable rates cannot be afforded.
In view of these, we see that it is necessary to analyze the operational
rate-distortion performance of uniform threshold quantization for a
sum of independent memoryless Laplacian sources.

Let Q denote a uniform threshold quantizer. In this paper, we
will derive parametric expressions of HQ and DQ for a sum of two
or three independent memoryless Laplacian sources, and for both
symmetric and asymmetric Q. Simplified approximations will be
provided for the low-rate regime, which can be utilized to address
the above rate estimation problem in Wyner-Ziv coding. Through-
out this paper, we use the low-rate regime to denote the region of
rates below 1 bit per sample. It should be noted that despite the fact
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that the low-rate regime is practically more important than the high-
rate regime in video and audio compression, it is less investigated
analytically than the high-rate regime in the literature partly due to
technical difficulty. Finally we note that our analysis in this paper is
made possible by and is an interesting demonstration of the famous
Euler-Maclaurin summation formula in infinite series theory [5].

2. PERFORMANCE FOR THE SUM OF TWO LAPLACIAN
SOURCES: SYMMETRIC CASE

In this section, we investigate the performance of symmetric uni-
form threshold quantization for the sum of two or three independent
memoryless Laplacian sources with zero mean.

Consider the one-dimensional quantization of a discrete-time
memoryless zero-mean stationary process (source) {Xi}∞i=1 with
marginal pdf f(x) and variance σ2X = E[X21 ]. When Q is clear
from the context, we shall drop the subscript Q in HQ and DQ de-
fined in (1) and (2), respectively. From (1) and (2) we see that an
optimum quantizer Q minimizes

D =
�
k

� xk+1

xk

f(x)(yk − x)2dx. (3)

subject to the constraint

H = −
�
k

pk log2 pk, (4)

where

pk =

� xk+1

xk

f(x)dx. (5)

Note that quantizer reconstruction levels are assumed to be entropy
coded at a rate R which is arbitrary close to the entropy HQ. Using
the technique from [2], we have the following expression for the yk,

yk =
1

pk

� xk+1

xk

xf(x)dx, (6)

which minimizes the mean square error distortion forX1 ∈ [xk, xk+1].
The performance of uniform threshold quantization for an mem-

oryless Laplacian source was analyzed in [3], where parametric ex-
pressions for D and H above were obtained. In the following, we
consider a source which is a sum of two independent memoryless
Laplacian sources with zero-mean. We are interested in getting an-
alytical expressions for both H and D, especially in the low-rate
regime for the reason stated in the introduction section.

Let {Xi}∞i=1 denote the source as the sum of two independent
memoryless Laplacian sources with zero mean and variance 2/λ2.
Let Q be a symmetric uniform threshold quantizer with threshold
levels {xk} and reconstruction levels {yk}, where xk = kΔ. In the
above Δ is a positive consant. We now computeD andH according
to (3) and (4) for the source {Xi}∞i=1. Note that due to page limit,
some derivation steps are omitted.

Let f(x) be the probability density function of X1. It is easy to
verify that

f(x) =
λ

4
e−λ|x| (1 + λ|x|) , (7)

and that the variance ofX1 is given by

σ2X =
4

λ2
. (8)

First, we calculate pk from (4).

pk =

� xk+1

xk

λ

4
e−λ|x| (1 + λ|x|) dx

=
1

4
e−x a (x b+ c) (9)

for k ≥ 0. In the above a
Δ
=λΔ, b

Δ
=
�
1 − e−a� a, and c

Δ
=2 −

2 e−a − ae−a. From symmetry of f(x) it is clear that pk will have
the same expression as (9) for k < 0.

Second, we derive an expression for yk. It follows from (6) and
(9) that

yk =
1

λ

k2a2A+ k[3aA+ 2a2] + 3 + a2 + 3A

kaA+ 2A+ a
, (10)

where A
Δ
=1 − ea.

Using the symmetry of f(x) again, we get from (3) that

D =
�
k∈I

� xk+1

xk

f(x)(yk − x)2dx

= 2

∞�
k=0

�� (k+1)Δ

kΔ

f(x)y2kdx−
� (k+1)Δ

kΔ

f(x)2ykdx+

� (k+1)Δ

kΔ

f(x)x2dx
�
.

In the above, the last summand on the right hand side is the variance
ofX1 given by (8). Taking into account (9) we have

D =
4

λ2
− 2

∞�
k=0

yk
2pk. (11)

In view of (11), (10), and (9), we see that to perform the summa-
tion in (11) on the index k we cannot get a closed form expression.
Nonetheless, we now propose to use a famous result from infinite se-
ries theory, namely, Euler-Maclaurin summation formula [5], which
states the partial sum of the first n terms in the series {f(k)}∞k=1 can
be convert to an integral as follows.

f1 + f2 + ...+ fn

=

� n

1

f(x)dx+
1

2
[fn + f1] +

B2
2!

[f
′
n − f ′

1] +
B4
4!

[f
′′′
n −

f
′′′
1 ] + ...+

B2k
2k!

[f (2k−1)n − f (2k−1)1 ] +Rk, (12)

where Bk are Bernoulli numbers, and Rk is an error term. It can
be shown that |Rk| < 4

(2π)k
|f (2k)(1)| when the sum is infinite and

f (2k)(∞) = 0.
Finally, using (12) we can approximate D and R to any given

precision. In fact, by keeping only first derivative, we find that the
error term is in the order of 10−2. When more precision is required,
more terms shall be taken into account in (12). The final expressions
for D and R are quite lengthy. In later sections we will see that in
the low-rate regime these formulas become more manageable. For
the sake of the completeness we show the expressions for D and R
here for any rate.

D =
�
4 − 0.5(4e3a − 4 + 2e2aa2 − 12e2a + a3e2a −

2eaa2 + eaa3 + 12ea)
�
/
�
(ea − 1)(1− 2ea + e2a)

�−
2(1 + 4e2aa2 − 2e3aa2 + e2aa4 + 6e2a − 2eaa2

−4e3a + e4a − 4ea)
�
0.25

eca/bEi(a+ ca/b)

b
+
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1

8

e−a

b+ c
+

833

40000

ae−a

b+ c
+

833

40000

be−a

(b+ c)2
+

1

4c
]/(−1 + ea)2, (13)

where a
Δ
=λΔ, b

Δ
=eaa(ea − 1), c

Δ
=ea(2ea − a − 2), and Ei(x)

denotes an exponential integral, i.e., Ei(t)
Δ
=
�∞
1

e−tx

x
dx.

H = −0.5
(ac+ b+ ab) e−a ln (b+ c)

ln (2) a2
−

0.5be
ac
b Ei

�
1, a+

ac

b

�
(ln (2))−1 a−2

−0.5
e−ab

ln (2) a2
− 0.25

e−a (b+ c) ln (b+ c)

ln (2)
−

1

24

ae−a (b+ c) ln (b+ c)

ln (2)
+

1

24

e−ab ln (b+ c)

ln (2)
+

1

24

e−ab
ln (2)

+
ea (b− c+ cea)

(−1 + ea)2
+

0.7213
a (ea)2

�
(b+ c) e2 a + ea (b− c)�
(−1 + ea)3 e2 a

−

0.5
c ln (c)

ln (2)
, (14)

where b
Δ
=
�
1 − e−a� a and c

Δ
=2 − 2 e−a − ae−a.

Table (1) compares the values D for a fixed H obtained by nu-
merical methods, and the ones obtained by parametric expressions
(13) and (14). Note that in the symmetric case, the rate is always
greater than or equal to 1 bit per sample. Throughout this paper,

SNR denotes the signal to noise ratio, i.e., SNR = 10 log10
σ2X
D

.

H bits per sample 1.01 2 3

a 8.64 2.13 1.02

Analytical SNR, dB 3.75 10.64 16.7

Numerical SNR, dB 3.73 10.66 16.73

Table 1. Comparison of analytical and numerical SNRs for the sum
of two Laplacian sources

3. PERFORMANCE FOR THE SUM OF THREE
LAPLACIAN SOURCES: SYMMETRIC CASE

In this section, we investigate the performance of symmetric uniform
threshold quantization for the sum of three independent memoryless
Laplacian sources with zero mean. Let {Xi}∞i=1 denote the source
as the sum of three independent memoryless Laplacian sources with
zero mean and variance 2/λ2. Let f(x) be the probability density
function ofX1. It is easy to verify that

f(x) =
λ

16
e−λ|x|(3 + 3λ|x| + λ2x2), (15)

and the variance of X1 is given by σ2X = 6
λ2
. Along the line in the

previous section, we now computeD andH according to (3) and (4)
for the source {Xi}∞i=1.

First, we calculate pk from (4).

pk =

� xk+1

xk

f(x)dx =
1

16
e−ak(bk2 + ck + d), (16)

where a
Δ
=λΔ, b

Δ
=a2(1− e−a), c Δ=− 2a2e−a +5a(1− e−a), and

d
Δ
=8(1 − e−a) − e−a(a2 + 5a). From the symmetry of f(x) it is

clear that pk will have the same expression as (9) for k < 0.
Second, we derive an expression for yk according to (6) and

(16).

yk =
1

λ

�
k3a3A+ k2a2(−3a+ 6A) +

ka(−12a− 3a2 + 15A) + 15A− 6a2 − a3 − 15a
�
/

�
k2a2A+ ka(5A− 2a) − 5a− a2 + 8A

�
, (17)

where A
Δ
=ea − 1.

Finally, for the sum of three Laplacian sources, we can use Mat-
lab symbolic toolbox to obtain final expressions forD andH , which
as expected turn out to be very lengthy, and will not be provided in
this paper. In the low bit rate regime of interest, however, the expres-
sions are much shorter, and will be provided in the next section. In
the following, we compare analytical and numerical results. As in
the case of two sources, these result agree to each other nicely.

H bits per sample 1.01 2 3

a 10.05 2.63 1.26

Analytical SNR, dB 3.96 10.6 16.63

Numerical SNR, dB 3.95 10.6 16.58

Table 2. Comparison of analytical and numerical SNRs for the sum
of two Laplacian sources

4. PERFORMANCE FOR THE SUM OF TWO OR THREE
LAPLACIAN SOURCES: ASYMMETRIC CASE

In this section, we investigate the performance of asymmetric uni-
form threshold quantization for the sum of two or three independent
memoryless Laplacian sources with zero mean, respectively.

Our sources are the same as in Section 2 and Section 3, respec-
tively. The difference is that the uniform threshold quantizer Q is
now asymmetric, i.e., the threshold levels satisfy xk = Δk + Δ

2
,

where k is an integer.

Consider now the source in Section 2. To calculate pk, we con-
sider three different cases: k ≥ 0, k < −1 and k = −1. For the
case of k ≥ 0 we have

pk =

� xk+1

xk

f(x)dx =
1

8
e−ak(bk + c), (18)

where a
Δ
=λΔ, b

Δ
=2ae−a/2(1−e−a), and c

Δ
=(4+a)e−a/2− (4+

3a)e−3a/2. Similarly one can derive the formula for the case of

k < −1. For p−1 we have p−1 = 1 − e−a/2(1 + a/4). It follows
immediately from the symmetry of f(x) that y−1 = 0. In view of
this, and (11), we see that

D =
4

λ2
− S, (19)

where

S =

∞	
k=0

yk
2pk +

−2	
k=−∞

yk
2pk. (20)
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Examining carefully yk
2pk, we recognize that it can be split into

two part: the exponential function of ak multiplied by a function
of a, and the exponential function of ak multiplied by a ratio of
polynomials of k. Evaluating the infinite sum

�
k∈I yk

2pk for rates
smaller than 1 bit per sample shows that with relative error by far
smaller than 10−2, which is adequate for most practical purposes,
we can keep in the expression for D only the first part. Performing
the similar evaluation for R simplifies expressions as well. It can be
shown, after taking into account (18-20), that in this case we have
the following expressions forD and R.

H = −2(V1 + V2 + T0) − q log2(q),

where V1
Δ
= − 3/8 (4 + a) e−1/2 a,

V2
Δ
= − .1803a((b+c)e

2 a−ea(−b+c))
(−1+ea)3 , T0 = 1/8 c log2 c,

q
Δ
=1 − e−1/2 a (1 + 1/4 a) , b

Δ
=2

�
e−1/2 a − e−3/2 a

�
a,

and c
Δ
=(4 + a) e−1/2 a − (4 + 3 a) e−3/2 a.

λ2D = 4 − 2S1,

and SNR = 10 log10
4

Dλ2
, where S1 = AC/B. In the above,

A
Δ
= −208− 208 a+ 64 eaa3 − e4 aa4 + 4 e2 aa4 −

6 e3 aa4 − 144 e4 aa− 60 e4 aa2 − 12 a3e4 a −
496 e2 aa2 − 1056 e2 aa+ 38 eaa4 + 264 a2e3 a −
3 a4 + 640 ae3 a − 24 e2 aa3 − 148 a2 − 928 e2 a +

592 e3 a − 28 a3 − 144 e4 a + 672 ea + 768 eaa+

440 eaa2 + 16 e−a,

C
Δ
=

�
e−1/2 a

� −1

32
, and

B
Δ
= (−4 − 3 a+ 4 ea + eaa) (ea − 1)3 .

Table (3) below compares the valuesD for a fixedH obtained by
numerical methods, and the ones obtained by parametric expressions

H bits per sample 1 0.9 0.7 0.5 0.3 0.1

a 4.6 4.98 5.85 6.97 8.57 11.7

Analytical SNR, dB 5.16 4.65 3.66 2.67 1.68 0.64

Numerical SNR, dB 5.16 4.66 3.65 2.66 1.68 0.63

Table 3. Comparison of analytical and numerical SNRs for the sum
of two Laplacian sources in the asymmetric case

We then consider the sum of three independent memoryless Lapla-
cian sources with zero mean in Section 3. The following parametric
expressions ofH andD are obtained in the low-bit rate regime.

H = −2(V1 + V2 + T0) − q log2(q),

where V1
Δ
= 3
32

ea(b−c+cea+bea+d−2 dea+de2 a)
(−1+ea)(−1+2 ea−e2 a) ,

V2
Δ
=0.0225

aea(b−c+4 bea+d−2 dea+de2 a+ce2 a+be2 a)
(−1+ea)2(−1+2 ea−e2 a) ,

T0
Δ
= 1
64
d log2 d, q

Δ
=1 − e−1/2 a �1 + 5

16
a+ 1/32 a2

�
,

b
Δ
=4 a2e−1/2 a

�
1 − e−a�,

c
Δ
=20 e−1/2 aa

�
1− e−a�+ 4 a2e−1/2 a

�
1 − 3 e−a

�
, and d

Δ
=

10 e−1/2 aa
�
1 − 3 e−a

�
+a2e−1/2 a

�
1 − 9 e−a

�
+32 e−1/2 a

�
1 − e−a�.

D = λ2D = 6 − 2S1,

and SNR = 10 log10
6

Dλ2
, where S1

Δ
=A/B. In the above,

A
Δ
= 92 e4 aa2 + 312 e4 aa+ 14 e4 aa3 + e4 aa4 + 416 e4 a +

32 e3 aa4 − 304 e3 aa2 − 1248 e3 aa+ 64 a3e3 a −
1664 e3 a + 2496 e2 a + 1872 ae2 a + 94 a4e2 a +

424 e2 aa2 + 4 e2 aa3 − 304 eaa2 − 1248 eaa−
96 eaa3 − 1664 ea + 92 a2 + 312 a+ 14 a3 + a4 + 416

B
Δ
= 256 (ea − 1)

�
e3 a − 3 e2 a + 3 ea − 1

�
e1/2 a.

Table (4) compares the valuesD for a fixedH obtained by numerical
methods, and the ones obtained by parametric expressions

H bits per sample 1 0.9 0.7 0.5 0.3 0.1

a 5.75 6.2 7.23 8.52 10.34 13.8

Analytical SNR, dB 4.91 4.42 3.44 2.49 1.54 0.58

Numerical SNR, dB 4.96 4.44 3.45 2.49 1.55 0.57

Table 4. Comparison of analytical and numerical SNRs for the sum
of three Laplacian sources in the asymmetric case

5. CONCLUSIONS

In this paper we have derived parametric expressions of HQ and
DQ for a sum of two or three independent memoryless Laplacian
sources, and for both symmetric and asymmetric optimum uniform
threshold quantizers Q. Simplified approximations have been pro-
vided for the practically important low-rate regime. These approx-
imations may be utilized to provide an efficient solution to the rate
estimation problem in practical Wyner-Ziv coding. A key approx-
imation technique that makes our analysis poissbile is the famous
Euler-Maclaurin summation formula.
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