
ADAPTIVE RATE FILTERING FOR A SIGNAL DRIVEN SAMPLING SCHEME 
 

Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin 
TIMA, CNRS UMR 5159, 46 avenue Felix-Viallet, 38031 Grenoble Cedex 

{saeed.mian-qaisar, laurent.fesquet, marc.renaudin}@imag.fr 
 

ABSTRACT 

This work is a contribution to enhance the signal processing chain 
required in mobile systems. The system must be low power as it is 
powered by a battery. Thus a signal driven sampling scheme based 
on level crossing is employed, adapting the sampling rate and so the 
system activity by following the input signal variations. In order to 
filter the non-uniformly sampled signal obtained at the output of this 
sampling scheme a new adaptive rate FIR filtering approach is de-
vised. The idea is to combine the features of both uniform and non-
uniform signal processing tools to achieve a smart online filtering 
process. The computational complexity of the proposed approach is 
deduced and compared to one of the classical FIR filtering ap-
proach. It promises a significant gain of the computational effi-
ciency and hence of the processing power.  
 
Key Words: Level-crossing sampling, Asynchronous design, Activity 
selection, Adaptive rate filtering.  
 

1. CONTEXT OF THE STUDY 

This work is part of a large project aimed to enhance the signal 
processing chain required in mobile systems. The motivation is to 
reduce their power consumption, electromagnetic emission and 
processing noise by smartly reorganizing their associated signal 
processing theory and architectures. The idea is to combine the 
signal’s event driven processing with asynchronous design in 
order to reduce the system’s dynamic activity. Most of the systems 
are processing signals with interesting statistical properties, but 
Nyquist signal processing architectures do not take advantage of 
such properties. These systems are highly constrained due to the 
Shannon theory especially in the case of signals such as electro-
cardiograms, speech, seismic signals etc which are almost always 
constant and may vary sporadically only during brief moments 
[3]. This condition causes a large number of samples without any 
relevant information, a useless increase of system activity so a 
useless increase of power consumption. In order to avoid this 
problem a novel approach is adopted, the idea is to realize a signal 
driven sampling scheme of the analog input signal based on its 
amplitude variations. This sampling scheme drastically reduces 
the activity of the post processing, analysis or communication 
chain because it only captures the relevant information. It is based 
on “level-crossing” that provides a non-uniform time repartition of 
the samples. In this context an AADC (Asynchronous Analog to 
Digital Converter) [2] based on LCSS (Level Crossing Sampling 
Scheme) [1] has been designed by the CIS group of the TIMA 
Laboratory. Algorithms for processing [3] and analysis [8] & [9] 
of the non-uniformly spaced out in time sampled data obtained at 
the output of AADC have also been developed.  The aim of this 
work is to combine the features of both non-uniform and uniform 
signal processing tools in order to develop an efficient FIR filter-
ing approach. The idea is to adapt the filter order according to the 
variations of sampling rate.  

2. LCSS (LEVEL CROSSING SAMPLING SCHEME) 

In [4], authors have shown that ADC based upon LCSS has a re-
duced activity and thus allows power saving and noise reduction 
compared to Nyquist ADCs.  
An M-bit resolution AADC has 2M - 1 quantization levels which are 
disposed according to the input signal amplitude dynamic. A sample 
is captured only when the analog signal x(t) crosses one of these 
predefined levels. The samples are not uniformly spaced in time 
because they depend on the signal variations as it is clear from Fig-
ure 1.  
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Figure 1: Level-crossing sampling scheme  

 
In [5], Beutler showed that the reconstruction of an original con-
tinuous signal is possible, if the average sampling frequency F  of 
the non-uniformly sampled signal is greater than twice of the signal 
bandwidth fmax. This condition can be expressed mathematically 
by

max2 fF . According to [2], in the case of LCSS, the number of 
samples is directly influenced by the resolution of the AADC. For a 
M-bit resolution AADC, the average sampling frequency of a signal 
can be calculated by exploiting its statistical characteristics. Then an 
appropriate value of M can be chosen in order to respect the Beut-
ler’s criterion. 
 

3. PROPOSED FILTERING APPROACH 

The block diagram of the proposed filtering approach is shown in 
Figure 2.  
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Figure 2: Block diagram of the proposed filtering approach 

 
3.1. AADC + ASA 
 
For a non-uniformly sampled signal obtained at the output of an 
AADC, the sampling instants (according to [1]) are defined by the 
Equation 1. 
(1)  

nnn dttt 1
. 

In Equation 1, tn is the current sampling instant, tn-1 is the previous 
one and dtn is the time delay between current and previous sampling 
instant, as shown in Figure 1.  
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Let  be the processing delay of AADC for one sample point. For 
proper signal capturing the incoming signal must satisfy the “track-
ing condition” [2] given by Equation 2. In Equation 2, q is the quan-
tum of AADC and is defined by Equation 3. 
(2) q

dt
tdx )( . (3) 

12
)(

M

txq . 

In Equation 3, x(t) represents the amplitude dynamic of the band 
pass filtered signal, x(t) and M represents the resolution of AADC. 
As AADC has a finite sampling frequency so in order to respect the 
Beutler’s criteria [5] and tracking condition [2] we have employed a 
band pass filter with pass band Fmin ~ Fmax, at the input of AADC.  

The interesting (active) part of non-uniformly sampled 
signal is selected and windowed by employing ASA (activity selec-
tion algorithm). This algorithm has been implemented by employing 
the values of dtn (Equation 1) the complete procedure of activity 
selection has explained in [8]. ASA displays interesting features 
with LCSS which are not available in the classical case. It correlates 
the length of selected window with the signal activity. In addition, it 
also provides an efficient reduction of the phenomenon of spectral 
leakage in case of transient signals (signals which start and finish at 
zero). This is done by avoiding the signal truncation problem occurs 
in the classical case with the use of a simple and efficient algorithm 
instead of a smoothening window function (used in classical 
scheme) [8]. 
 
3.2. Adaptive Rate Sampling 
 
In case of AADC the sampling is triggered when the input signal 
crosses one of the pre-specified threshold levels defined in the am-
plitude domain. As a result, the temporal density of the sampling 
operation in the level crossing scheme adapts with time by follow-
ing the input signal variations. The ASA is used to select and win-
dow this non-uniformly sampled data. It is possible to use the non-
uniformly sampled sequence directly to do the digital processing on 
it. However In the studied case it is required to uniformly re-sample 
the selected data obtained at the output of ASA. So there will be an 
additional error due to this transformation. Nevertheless, prior to 
this transformation, one can take advantage of the inherent over-
sampling of the relevant signal parts in the system [3]. The interest-
ing signal parts are locally over-sampled in time while keeping the 
global (average) sampling rate lesser than the classical one. This 
idea is well suited for the low activity sporadic signals. This over-
sampling improves the accuracy of signal acquisition and post inter-
polation processes. The NNR (nearest neighbour re-sampling) inter-
polator is employed for data re-sampling. The reasons of inclination 
towards NNR interpolation are discussed in [8] & [10]. The re-
sampling frequency (Frsi) of each selected window obtained at the 
output of ASA can be specific depending upon the window length 
(in seconds) and slope of the signal activity lying within this win-
dow [8]. The value of Frsi for the ith selected window can be calcu-
lated by using the following equations. 
(4)    Tsi = tmaxi – tmini  , 
(5)   Frsi = Ni / Tsi. 
In Equation 4, tmaxi and tmini are the final and the initial times of 
the ith selected window; these parameters describe the window 
length Tsi in seconds. In Equation 5, Ni is the number of samples 
lying in the ith selected window, it depends upon the slope of the 
signal activity lying within this window. Frsi is the re-sampling 
frequency of the ith selected window [8]. 
 
3.3. Adaptive Rate Filtering 
 
The motivation behind the proposed filtering approach is to achieve 
smart sampling (only relevant information to process) along with 
adaptive and optimal filter order (minimum number of operations 

per output sample), without performing the complex filter design 
(calculation) algorithm during online computation. This leads to 
maximise the computational gain and power efficiency while per-
forming the proposed adaptive rate FIR filtering.  
This filtering approach is a smart alternative of the multirate filter-
ing, achieves computational efficiency which is not attainable with a 
time invariant FIR filter operates at a fixed sampling rate [6] & [7].  
As in case of FIR filters with fixed frequency domain parameters 
the filter order changes as a function of the operational sampling 
rate. For high sampling rate the order is high and vice versa. In case 
of proposed approach the sampling rate and the filter order both are 
adapted by following the incoming signal variation. The computa-
tional efficiency is achieved by using the simple (low order) adap-
tive rate filters operate at reduced sampling rates instead of a unique 
complex (high order) filter operates at a high sampling rate.  
The idea is to offline design an appropriate set of reference filters 
for a specific application by exploiting the statistical characteristics 
of incoming signals. In this case the reference filters are designed by 
taking into account the worst case (highest sampling rate). Here the 
worst case points towards the Bernstien’s inequality [2], given by 
Expression 6. In Expression 6, x(t) is the amplitude dynamics of 
the x(t). The term on left hand side is the slope of the signal and fmax 
is the bandwidth of x(t). Thus for a known resolution of AADC the 
highest sampling rate Fmax occurs for a sinusoid of frequency fmax 
and amplitude x(t) and can be calculated by employing the Equa-
tion 7. In Equation 7, M represents the resolution of AADC. 
  (6) 

max).(..2)( ftx
dt

tdx   .           (7)  )12.(.2 maxmax
MfF   . 

A set of reference FIR filters with appropriate specifications can be 
designed for a set of reference frequencies Fref, consists of Fmax and 
its dividers. Then during online processing an appropriate reference 
filter can be chosen for the ith selected window from this pre-
calculated set. This choice is made on the basis of Fref and the ef-
fective value of Frsi. Let us introduce here the index notation c in 
order to make the distinction between the chosen reference filter and 
the complete set of reference filters. The reference filter whose cor-
responding value of Frefc is closest and greater or equal to Frsi is 
chosen. Afterwards the chosen reference filter’s impulse response 
can be adjusted (decimated) as a function of Frsi for the ith selected 
window. The decimation factor Di can be specific for each selected 
window depending upon the value of Frsi.  
Various methods can be adapted to deal with the fractional values of 
Di and to keep the sampling rate of decimated filter coherent with 
the re-sampling rate of the data lying in the ith selected window. The 
employed method is depicted in Figure 3.  

Di is integer

FrsiFrsi= Frsi x Di / floor(Di)

IF YesIf No

Di = Frefc/Frsi

Di is integer

FrsiFrsi= Frsi x Di / floor(Di)

IF YesIf No

Di = Frefc/Frsi

 
Figure 3: Flowchart of method to avoid fractional value of Di. 

 
From Figure 3 it is clear that the values of Di and Frsi are correlated. 
First the Di is calculated by using the Frsi and then a decision is 
made on the basis of Di, weather an adjustment of Frsi is required or 
not. If Di is an integer keep the same value of Frsi. If Di is not an 
integer, make an increment in the value of Frsi depending upon the 
fractional part of Di and then Di is recalculated for this new Frsi. 
This fulfils the both above stated goals of keeping the value of Di as 
a whole number and the sampling rate of decimated filter coherent 
with the Frsi. Moreover it further improves the accuracy of the in-
terpolation process when re-sampling the data lying in the ith se-
lected window. 
A simple decimation leads to a reduction of filter’s energy which 
will lead to an attenuated version of the filtered signal. As Di is a 
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good approximate of the ratio of energy of the original (chosen ref-
erence filter) and energy of the decimated filter (decimated for the ith 
selected window). So this effect of decimation is compensated by 
scaling (weighting) the coefficients of the decimated filter with the 
value of Di as a scaling factor.  
The process of obtaining the decimated and scaled filter for the ith 
selected window from the chosen reference filter is shown mathe-
matically by Equations 8 and 9. 
    (8)   kDj i

hchdi   .      (9)   
ijj Dhdihwi   . 

According to Equation 8 the decimated filter’s impulse response hdij 
for the ith selected window is obtained by picking every Di

th coeffi-
cient from the impulse response hck of the chosen reference filter. 
Here k and j represents the indexes of the impulse responses of the 
chosen reference filter and of the decimated filter respectively. If the 
length of hck is Ac then the length of hdij will be Pi = Ac/Di. The 
process of scaling the hdij in order to obtain the decimated and 
scaled impulse response hwij for the ith selected window is clear 
from Equation 9.  
 
4. ILLUSTRATIVE EXAMPLE 

In order to illustrate the proposed filtering approach an input signal 
summarised in Table 1 is employed. Its total duration is 20 seconds 
and consists of three active parts. From Table 1 it is clear that the 
signal is band limited up to 1 kHz. This signal is sampled by em-
ploying a 3-bit resolution AADC. So in this case the highest sam-
pling rate Fmax, calculated by using Equation 7 is 14 kHz.  

Active 
Part Signal Components Length 

(sec) 
First 0.6.sin(2.pi.10.t) +  0.3.sin(2.pi.300.t) 1.0 

Second 0.45.sin(2.pi.20.t) + 0.45.sin(2.pi.150.t) 1.0 
Third 0.65.sin(2.pi.5.t) + 0.25.sin(2.pi.1000.t) 0.5 

Table 1: Summary of input signal active parts 
 
The input signal and the selected signal obtained at the output of 
ASA are shown on the Figure 4. 

 
Figure 4: Input signal (left) and the selected signal obtained at the 
output of ASA (right). 
 
From Table 1 it is clear that each active part of the signal has a low 
and high frequency component. In order to separate the low fre-
quency component of each activity from higher one two low pass 
reference FIR filters are implemented as a standard Parks-McClellan 
algorithm. The filters parameters are given in Table 2.  

Cut-off 
Freq 

Transition 
Band (Hz) 

Pass Band 
Ripples 

Stop Band 
Ripples 

Fref 

(k Hz) A 

30 (Hz) 30~100 -25 (dB) -80 (dB) 14 506 
30 (Hz) 30~100 -25 (dB) -80 (dB) 7 253 

Table 2: Summary of reference filters parameters 
 
In Table 2 Fref represents the set of reference frequencies for which 
the reference filters are designed. Where as A represents the set of 
orders of the designed reference filters.   
The parameters of each selected window along with the filter’s or-
der (Pi), adapted for each selected window are summarized in Table 
3. Here the chosen reference filter in case of each selected window 
is h2k i.e. one designed for the 7 kHz sampling rate. Table 3 exhibits 

the interesting features of the proposed filtering approach. The val-
ues of Ni represent the sampling rate adaptation by following the 
input signal slope. It is achieved due to the smart features of AADC 
based on LCSS. It is also clear from Ni that the interesting (active) 
parts of signal are over-sampled locally like any harmonic signal 
[3]. The values of Ti in Table 3 exhibit the dynamic feature of ASA 
which is to correlate the window length with the signal activity lying 
in the window. On the other hand in the classical case during the 
windowing process we are not able to select only the active part of 
the signal. Moreover the window length remains static and is not 
correlated with the signal activity in the window. For this studied 
example a 1 second window length would lead to 20, 1-second win-
dows for the whole signal duration (20 sec) in classical case. It fol-
lows that the system has to process more than the relevant part of 
the information. The parameter Pi represents the adaptation of fil-
ter’s order according to the values of Frsi it is another advantage of 
the proposed approach achieved due to the appealing feature of 
ASA. Whereas in the classical case the filter remains time invariant 
so has to be designed for the worst case. As the input signal is band 
limited to 1 kHz. So, if the sampling rate is chosen equal to 2.5 kHz 
in order to satisfy Shannon’s criteria then for the same filter parame-
ters (Table 2) Parks-McClellan algorithm design requires a 90th 
order FIR filter. As in standard case the  signal regardless of its 
activity is sampled at a fixed sampling rate (2.5 kHz) so a fixed 
order filter (H = 90) has to be employed for the whole signal length, 
cause the extra system activity. 
 

Selected 
Window 

Ti 
(Sec) 

Ni 
(Samples) 

Frsi 
(Hz) D(i) (Pi) 

First 0.9995 1400 1400 5 51 
Second 0.9994 1166 1166 6 43 
Third 0.4995 1750 3500 2 127 

Table 3: Summary of the parameters of the selected windows 
 
Spectrum of the signal lying in 2nd window obtained after filtering 
by the chosen reference filter h2k (with sampling rate of 7 kHz) and 
by the decimated and scaled filter hw2j  (with sampling rate of 1166 
Hz) are shown in Figure 5. 

10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

Zoom of the spectrum of signal filtered by chosen reference filter

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1
Spectrum of signal filtered by chosen reference filter

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1
Spectrum of signal filtered by decimated filter

10 20 30 40

0.1

0.15

0.2

0.25

Zoom of the spectrum of signal filtered by decimated filter

Frequency Axis 

A
m

pl
itu

de
 A

xi
s 

 
Figure 5: Spectrum of signal filtered by chosen reference filter and 
by decimated and scaled filter (top-left) and (top-right) respectively. 
Zoom of the spectrum of signal filtered by chosen reference filter 
and by decimated and scaled filter (bottom-left) and (bottom-right) 
respectively. 
 
From Figure 5 it is clear that the results obtained by the decimated 
and scaled filter are of comparable quality with the results obtained 
by the chosen reference filter. It is obvious that by decimating the 
chosen reference filter we are loosing its quality in terms of desired 
filter response. This loose of quality can be used as an upper bound 
on decimation factor (Di) , the maximum value of Di for which the 
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decimated and scaled filter provides response with an acceptable 
level of accuracy. 
    

5. ALGORITHM EFFICIENCY 

This section compares the computational complexity of the pro-
posed filtering approach with standard one. The complexity evalua-
tion is made by considering the number of online operations exe-
cuted to perform the algorithm. For simplicity, it is assumed that 
each operation like addition, multiplication and division has equal 
complexity.                                                                                           
It is known that in classical case a time invariant, fixed order filter is 
employed for a specific application. As for a H order FIR filter, H 
multiplications and H accumulations are computed for each output 
sample so the operations count per output sample is 2.H. The total 
computational complexity C1 for Nu (total number of uniform) sam-
ples can be calculated by employing Equation 10.                                      
Where as in the proposed approach the filter order is not fixed and 
adapts for each selected window according to the value of Frsi. In 
comparison to classical case this approach requires extra operations. 
Let q be the length of the set of reference frequencies Fref. Then the 
choice of reference filter for the ith selected window requires q com-
parisons between the values of Fref and Frsi in worst case. The cal-
culation of Di requires six operations in worst case, three divisions, 
one multiplication, one comparison and one floor operation as is 
clear from Figure 3. These operations repeat once for each selected 
window. In order to make the complexity comparison we are taking 
in to account the operations count for the worst case. The decimator 
has a negligible complexity as compare to the operations like addi-
tion or multiplication. This is the reason that the complexity of the 
decimator used to decimate the chosen reference filter for the ith 
selected window is not taken into the consideration here. Coeffi-
cients scalar (weightner) performs Pi multiplications here Pi repre-
sents the order of decimated filter for the ith selected window. An-
other step of data re-sampling is required before filtering. In this 
case we are employing NNR interpolator to re-sample the data. The 
NNR interpolator requires only a comparison operation so perform 
Ni comparisons here Ni represents the total number of samples lying 
in the ith selected window. The combined computational complexity 
C2 of the proposed filtering approach is given by Equation 11. The 
processes of designing the set of reference filters is performed off-
line so is not included in the online algorithm complexity calcula-
tion. 

  (10)  
uNHC ..21

 .           (11)  L

i
iiii NPNPqLC

1
2 ..2)6(  . 

In Equation 11 i = 1,2,3,…..,L represents the index of selected win-
dow. The computational gain of the proposed filtering approach 
over classical one can be calculated by employing Equation 12. 
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The computational gain of the proposed adaptive rate filtering ap-
proach over time invariant classical one has been calculated for the 
results of illustration example (Table 3) for different time spans by 
employing Equation 12. It gives 4.4 times gain for the second se-
lected window (1 sec) and a gain of 13 times for the whole signal 
span (20 sec) respectively. This gain has achieved by signal driven 
sampling (only the relevant number of samples to process) along 
with adaptive rate filtering (relevant filter order; relevant number of 
operations per output sample).    

6. CONCLUSIONS 

A new adaptive rate filtering approach has been proposed. This 
technique is well suited for the signals which remain constant most 
of the time and vary sporadically as electro-cardiograms, speech, 
seismic signals, etc. A set of reference filters is designed offline by 
taking into account the signal statistics and application require-
ments. A complete methodology of firstly choosing the most appro-
priate reference filter from the pre-calculated set and then decimat-
ing and scaling it during the online computation is demonstrated. It 
shows how the order of chosen reference filter is smartly adapted for 
each selected window by following the value of Frsi. The computa-
tional complexity of the proposed adaptive rate filtering approach is 
deduced and compared with the time invariant classical one by us-
ing the results of an illustrative example. The result shows 13 times 
computational gain over classical one which shows that the pro-
posed filtering technique leads to a significant reduction of the total 
number of operations. This reduction in number of operations is 
achieved by combining the adaptive rate sampling (only process the 
relevant information) along with adaptive filter order (reduce the 
number of operations per output sample).  
The decimation of reference filters reduces the quality of decimated 
filters as compared to the reference ones. The maximum value of 
decimation factor can be decided by offline calculations for which 
the decimated and scaled filter gives response with acceptable level 
of accuracy. Moreover in case of applications where high quality 
filtering is required, an appropriate filter can be calculated directly 
online for each selected window at the cost of increased computa-
tional load.  

 
REFERENCES 

 
[1] J.W. Mark and T.D. Todd, “A nonuniform sampling  approach 
to data compression” IEEE Transactions on Communications, vol. 
COM-29, pp. 24-32, January 1981. 
 [2]  E. Allier, G. Sicard, L.  Fesquet and M. Renaudin, “A new        
class of asynchronous A/D converters based on time quantization”, 
ASYNC'03, pp.197-205, Vancouver, B.C, Canada, May 2003. 
[3] F. Aeschlimann, E. Allier, L. Fesquet and  M. Renaudin,        
“Asynchronus FIR filters, towards a new digital processing          
chain”, ASYNC'04, pp. 198-206, Crete, Greece, April 2004.  
[4] N. Sayiner, H.V. Sorensen and T.R. Viswanathan, “A Level-      
Crossing Sampling Scheme for A/D Conversion”, IEEE       
Transactions on Circuits and Systems II, vol. 43, pp. 335-339,       
April 1996. 
[5] F.J. Beutler, “Error free recovery from irregularly spaced       
samples”, SIAM Review, vol. 8, pp. 328-335, 1996. 
[6] Shuni Chu, Burrus, C. “Multiate filter designs using comb fil-
ters”, IEEE transaction on Circuits and Systems, vol. 31, PP. 913-
924, November 1984. 
[7] Martin Vetterli, M. “A theory of multirate filter banks”, IEEE 
transaction on Acoustic, Speeh and Signal Processing, vol. 35, 
March 1987. 
[8] Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin “Spectral 
Analysis of a signal Driven Sampling Scheme”, EUSIPCO 2006, 
September 4-8, 2006, Florance Italy. 
[9] F. Aeschlimann, E. Allier, L. Fesquet and M. Renaudin “Spec-
tral analysis of Level Crossing Sampling Scheme”, International 
Workshop on Sampling theory and application SAMPTA, Samsun, 
Turkey, 10-15 July 2005. 
 [10] S. de Waele and P.M.T.Broersen “Time domain error meas-
ures for resampled irregular data”, IEEE Transactions on Instrumen-
tation and Measurements, pp.751-756, Venice, Italy, May 1999.   

III ­ 1468


