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ABSTRACT

For a transfer function/ lter F (ejω) of order n, Kalman-Yakubovich-Popov
(KYP) lemma characterizes the intractable semi-in nite programming (SIP)
condition F (e−jω) 1 Θ [F (ejω) 1]T ≥ 0 ∀ ω in frequency domain by
a tractable semi-de nite programming (SDP) in state-space domain. Some
recent results generalize this lemma to SDP for SIP of frequency selectiv-
ity (FS-SIP). All these SDP characterizations are given at the expense of
the introduced Lyapunov matrix variable of dimension n × n, making them
impractical for high order problem. Moreover, the existing SDP character-
izations for FS-SIP do not allow to formulate synthesis/design problems as
SDPs. In this paper, we propose a completely new SDP characterization of
general FS-SIP, which is of moderate size and is free from Lyapunov vari-
ables. Extensive examples are provided to validate the effectiveness of our
result.

Index Terms— KYP lemma, semi-de nite programming (SDP), IIR l-
ter banks

1. INTRODUCTION

The celebrated Kalman-Yakubovich-Popov (KYP) lemma with its
variations such as positive real lemma and bounded real lemma (see
e.g. [1–5]) are certainly among the most fascinating results in mod-
ern control and signal processing. They allow to express a compu-
tationally intractable semi-in nite programming (SIP) constraint of
a transfer function/ lter F (ejω) in frequency domain by a compu-
tationally tractable semi-de nite programming (SDP) in state-space
domain.

The most general KYP lemma (see e.g. [3]) states that given a
Hermitian inde nite matrix Θ ∈ C2×2, the SIP condition

F (ejω)
1

H

ΘΘΘ
F (ejω)

1
≥ 0 ∀ ω ∈ [0, 2π] (1)

for an n−order transfer function/ lter F (ejω) is characterized by a
SDP involving its state-space realization (AAA,BBB,CCC,DDD) and a Lya-
punov matrix function variable of dimension n × n. As a matter of
fact, the variable dimension n × n of Lyapunov variable, which is
equivalent to n(n + 1)/2 scalar variables, increases dramatically as
order n increases moderately. Consequently, the resultant SDPs are
of large dimension and dif cult to solve using existing SDP solvers
such as [6]. For instance, a 100-order transfer function/ lter requires
a Lyapunov variable of dimension 100 × 100, which is equivalent
to 5000 scalar variables. This ”curse of dimensionality” may not
be so visible in control as many physical plants are xed low or-
ders, so SDP in tandem with KYP and Lyapunov machineries are
the most dominant approach for control problems. However, many
signal processing applications require lters of very high order so
such kind of SDP is not applicable. Hence, traditional methods such

as interpolation (frequency sampling) and window techniques are
still popular though there is not much freedom in design speci ca-
tions [5].

Furthermore, many problems in signal processing involve SIPs
of a certain frequency selectivity rather the entire frequency range.
For example, one of the lter design speci cation is the peak er-
ror between the lter response and the ideal response in a passband
[0, ωp] and stopband [ωs, π], i.e. SIPs for ω ∈ [0, ωp] or ω ∈ [ωs, π]
only, thus an extension for the mentioned KYP lemma, commonly
referred to as frequency selective KYP (FS-KYP) lemma, is needed.

A number of FS-KYP lemma [7,8] experience the similar draw-
back of the original KYP lemma: even more matrix variables of
dimension n × n are involved in the SDP formulation. The formu-
lation of [8] does not allow to formulate a design problem as a SDP.
More precisely, it leads to a bilinear matrix inequality (BMI) formu-
lation for the problem. In [9], we obtain a new SDP characterization
of the FS inequality |F (ejω)| ≤ γ ∀ω ∈ [a, b] for nite impulse
response (FIR) F (ejω). This SDP formulation is of substantially re-
duced order and its dual formulation does not involve any additional
variables, hence opens a new way for effective solution of large di-
mensional digital systems. Our new SDP-based method can not only
compete well with the traditional methods but it offers much more
exibility.

The main objective of this paper is to derive a FS-KYP lemma
for in nite impulse response (IIR) systems. In contrast to other re-
sults, our resultant SDP are of much smaller dimension, enabling
very high order IIR lters to be solved effectively on a standard per-
sonal computer. Needless to say, IIR lter and lter bank design is
a fundamental problem in signal processing [5]. For a given speci -
cation, an IIR lter requires much lower order as compared to a FIR
lter. However, IIR lter and lter bank design is a challenging task.

Most digital IIR lters are either Chebyshev, Butterworth, or Elliptic
that are derived from their analog counterparts via bilinear transfor-
mation or the impulse invariant method [10]. The peak errors as well
as cut-off frequencies are not easily controlled. Thus the purpose of
the paper is two-fold
• To develop an effective FS-KYP lemma which requires a SDP of
moderate size for its solutions;
• To apply the obtained FS-KYP lemma to the problem of designing
IIR lter bank and QMF bank. As it is known [11], using the tra-
ditional KYP lemma these problems are formulated as BMIs, which
are highly non-convex from the optimization view point. Neverthe-
less, they are formulated as SDPs in the context of our newly devel-
oped FS-KYP lemma and thus are computationally tractable.

The structure of the paper is as follows. The reduced order for-
mulation is discussed in Section II. Based on this result, some IIR
lter bank design problems are developed in Section III and Section
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IV. Finally concluding remarks are presented in Section V.
The following notation is used in the paper. Vectors and ma-

trices will be represented by italicized bold lower case and upper-
case letters, respectively. The superscript “T” denotes the transpose
(without conjugation) whereas the superscript “H” denotes Hermitian
transpose. The conventional symbols R

N and C
N are used to denote

real and complex spaces. The standard notation XXX ≥ 0 represents
a positive semide nite Hermitian matrix and 〈XXX,YYY 〉 denotes the in-
ner product of the matrices XXX and YYY . For a set C, convC (cone(C),
resp.) is its convex hull (conic hull, resp.) i.e. it is the smallest
convex set (smallest cone) containing C (conv(C), resp.)

2. REDUCED ORDER SDP FORMULATION FOR
FREQUENCY SELECTIVE KYP LEMMA

2.1. Mathematical background

In this paper, we adopt the concept of the trigonometric curve and its
convex hull introduced in [9].
Let ϕϕϕn(ω) = (1, cos ω, cos 2ω, ..., cos nω)T , then a trigonometric
curve Ca,b ∈ R

n+1 is de ned as Ca,b := {ϕϕϕn(ω) : cos ω ∈
[cos a, cos b]} ⊂ R

n+1 and its polar C∗
a,b is given by C∗

a,b = {uuu ∈
R

n+1 : 〈uuu,vvv〉 ≥ 0 ∀ v ∈ Ca,b}. The k-th moment trigonometric
matrix TTT k of size (k + 1) × (k + 1) is de ned as the positive semi-
de nite matrix TTT k(ω) = ϕϕϕk(ω)ϕϕϕT

k (ω) and accordingly, the matrix
TTT k(yyy) is created from TTT k(ω) by the variable change

cos hω ← yh, h = 0, 1, 2, ..., (2)

i.e. TTT k(ω) = TTT k(ϕϕϕk(ω)). It is straightforward to show that

TTT k(yyy) =

⎡
⎢⎢⎣

y0 y1 . . . yk

y1
y2+y0

2
. . .

yk+1+yk−1
2

. . . . . . . . . . . .

yk
yk+1+yk−1

2
. . . y2k+y0

2

⎤
⎥⎥⎦ .

De ne also TTT 1k(ω) = cos(ω)TTT k(ω) and accordingly TTT 1k(yyy) =
TTT 1k(y1, y2, ..., y2k+1) is created fromTTT 1k(ω) by the variable change
(2). Our main results in this paper are based on the following LMI
characterization for the convex hull of the trigonometric curve Ca,b:

Theorem 1 ( [12]) The conic hull cone(Ca,b) of the trigonometric
curve Ca,b is fully characterized by LMIs: yyy ∈ cone(Ca,b) if and
only if it satis es the LMIs

cos bTTT [n/2](yyy) ≥ TTT 1[n/2](yyy) ≥ cos aTTT [n/2](yyy) (3)

The convex hull conv(Ca,b) of Ca,b is also fully characterized by
LMIs: y ∈ conv(Ca,b) if and only if it satis es the LMIs (3) with
y0 = 1.

Note that for n even, by the de nition, TTT 1[n/2](yyy) is a matrix func-
tion of (y0, y1, ..., yn+1) and accordingly LMIs (3) are understood
for some yyy ∈ R

n+2.
From the above result, it is easy and effective to transform SIP

optimizations to SDPs. For instance, consider the following general
optimization

min
xxx

xxxTQQQxxx + cccTxxx s.t. AAAixxx + dddi ∈ C∗
i , i = 1, 2, ..., m, (4)

where QQQ > 0 is given and Ci = cone(Cai,bi)). Then, by Theorem
1, its dual is

max
yyyi∈Ci

min
xxx

[xxxTQQQxxx + cccccccccTxxx −
m∑

i=1

(AAAixxx + dddi)
Tyyyi] =

⎧⎪⎨
⎪⎩

max
yyyi

−
m∑

i=1

yyyT
i dddi − 1

4
(ccc −

m∑
i=1

AAAT
i yyyi)

TQQQ−1(ccc −
m∑

i=1

AAAT
i yyyi) :

(3) for ai ← a, bi ← b, i = 1, 2, ..., m,

(5)

which can also be rewritten as a linear conic optimization [6] for
ef cient computation. The optimal solution xxx∗ of (4) is directly re-
trieved from the optimal solution yyy∗

i of (5) by the solution of the fol-

lowing linear equation system: QQQxxx∗ = − 1
2
(ccc −

m∑
i=1

AAAT
i yyy∗

i ). Thus

the optimal solution of the semi-in nite program (4) can be easily
found from the program (5) involving just (n+1)m scalar variables.

2.2. FS-KYP lemma

Now, any n-order IIR lter is represented as

F (ejω) =
N(ejω)

D(ejω)
=

n∑
k=0

nke−jkω

n∑
k=0

dke−jkω

=
ψψψT

n (ω)nnn

ψψψT
n (ω)ddd

(6)

where ψψψn(ω) = [1, e−jω, ..., e−jnω]T , nnn = [n0, n1, . . . , nn]T , ddd =
[d0, d1, . . . , dn]T . With the same Hermitian inde nite matrix ΘΘΘ ∈
C2×2 of (1), a FS-SIP is stated as

F (ejω)
1

H

ΘΘΘ
F (ejω)

1
≥ 0 ∀ cos ω ∈ [cos a, cos b]. (7)

The most popular particular cases of (7) are
• Frequency selective bounded realness (FS-BR) with

ΘΘΘ =
−1 0
0 γ2 =

0
γ

0
γ

T

− 1
0

1
0

T

(8)

i.e. |F (ejω)| ≤ γ ∀ cos ω ∈ [cos a, cos b]. (9)

Without FS restrictions, it merely says that the H∞-norm of F is
less than or equal γ.
• Frequency selective positive realness (FS-PR) with

ΘΘΘ =
0 2
2 0

=
1
1

1
1

T

− 1
−1

1
−1

T

(10)

i.e. F (e−jω) + F (ejω) ≥ 0 ∀ cos ω ∈ [cos a, cos b]. (11)

Without FS restriction, it merely says that the function F is positive
real.

A linear algebra based ef cient method has been proposed in
[13] for computing H∞-norm of F . This method, however, can-
not be extended for verifying (9). Also, another heuristic method to
solve LMIs in the original KYP lemma has been proposed in [14].
However, both methods do not work for the synthesis problem, i.e.
one has to design F satisfying (9). Now, based on the result of Theo-
rem 1, we provide a new look at FS-SIP (7). Clearly, (7) is equivalent
to:

N(ejω)
D(ejω)

H

ΘΘΘ
N(ejω)
D(ejω)

≥ 0 ∀ cos ω ∈ [cos a, cos b]. (12)
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De ning AAA =
nnnT

dddT , MMM = AAATΘΘΘΘΘΘΘΘΘAAA, TTT n(ejω) = ψψψn(ω)ψψψH
n (ω),

RRRn(ω) = Re(TTT n(ejω)), (12) is rewritten by

ψψψH
n (ω)MMMψψψn(ω) ≥ 0 ∀ cos ω ∈ [cos a, cos b]

⇔ 〈MMMMMMMMM,TTT n(ejω)〉 ≥ 0 ∀ cos ω ∈ [cos a, cos b]

⇔ 〈MMMMMMMMM,RRRn(ω)〉 ≥ 0 ∀ cos ω ∈ [cos a, cos b] (13)

⇔ 〈MMM,RRRn(yyy)〉 ≥ 0 ∀ y ∈ conv(Ca,b) (14)

Now, based on LMI characterization for conv(Ca,b) in Theorem 1
we can state the following result

Proposition 1 The FS-SIP (7) can be veri ed by the following SDP

min
yyy

〈MMM,RRRn(yyy)〉 : (3), y0 = 1. (15)

Namely, FS-SIP holds true if and only if the optimal value of SDP
(15) is nonnegative.

In contrast with all previous results on LMI characterization for SIP
(1) or (7) requiring a matrix variableXXX of dimension n×n, the above
SDP involves merely n + 1 scalar variables and thus is applicable to
F of large order n for practical interest.

One can see, SDP formulation is suitable only for analysis prob-
lem, i.e. to verify FS-SIP (7) for a given F . For a synthesis/design
problem, one has to design F to satisfy FS-SIP (7), so nnn and ddd in
(6) are design variables and then (15) is a BMI in (nnn,ddd,yyy). We now
reformulate (15) in a form that is more convenient for design.

Since ΘΘΘ is inde nite, by eigenvalue decomposition, there are
ppp = (α, β)T , qqq = (λ, μ)T and 〈ppp,qqq〉 = 0 such that ΘΘΘ = ppppppT −qqqqqqT

(see (8) and (10)). Then (13) is expressed as

n∑
i=0

(xi − ti) cos iω ≥ 0 ∀ cos ω ∈ [cos a, cos b]

⇔xxx − ttt ∈ C∗
a,b, (16)

where xxx = (x0, .., xn)T and ttt = (t0, ..., tn)T are the autocorrela-
tion sequences of uuu = αddd + βnnn and vvv = λddd + μnnn. For instances,
according to (8)

(9) ⇔ γd̄̄d̄d − n̄̄n̄n ∈ C∗
a,b, (17)

which will be used frequently from now on. Here n̄̄n̄n and d̄̄d̄d are the
autocorrelation sequences of nnn and ddd.

3. IIR FILTER BANK DESIGN

Consider the Quadrature Mirror Filter (QMF) bank shown in the
Fig. 1.

x(n)

H0(z) ↓ 2 ↑ 2 F0(z)

H1(z) ↓ 2 ↑ 2 F1(z)

x̂(n)

Fig. 1. The QMF bank structure

Suppose that Hi(z) and Fi(z) are all IIR lters, then alias-free
condition requires:

[F0(z), F1(z)] = [H0(z
−1), H1(z

−1)], H1(z) = z2k−1H0(−z−1)
(18)

Let P (z) = H0(z)H0(z
−1), the design of QMF bank reduces

to designing P (z) to be a halfband low-pass lter. Once P (z) is
derived, H0(z) is obtained from P (z) by factorization, and the other
three lters are derived from H0(z) according to (18). To satisfy
halfband condition, it is shown that P (z) must admit the following
representation [15]:

P (ω) := P (ejω) =
X(ω)

X(ω) + X(ω − π)
,

for a positive polynomial X(ω) = ϕϕϕT
n (ω)xxx (i.e. x ∈ C∗

π,0). Thus
under the peak-error δ and ε constraints for the frequency responses
of P (z) in a passband [0, ωp] and stopband [ω)s, π], P (ω) the de-
sign problem can be formulated as

min
xxx∈C∗

π,0

w1

∫ ωp

0

(P (ω) − 1)2dω + w2

∫ π

ωs

P (ω)2dω

s.t. 1 − δ ≤ P (ω)∀ω ∈ [0, ωp] ⇔ x − (1 − δ)e1 ∈ C∗
ωp,0,

P (ω) ≤ ε ∀ω ∈ [ωs, π] ⇔ −x + εe1 ∈ C∗
π,ωs

,

where e1 = (1, 0, ..., 0) ∈ R
n+1. As there is no analytical formula

for the objective function, we uses the following quadratic function
that also an indicator of deviation from the desired response

∫ ωp

0

[X(ω − π)]2 dω + γ1

∫ ωp

0

[X(ω) + X(ω − π) − 1]2 dω

+

∫ π

ωs

[X(ω)]2 dω + γ2

∫ π

ωs

[X(ω) + X(ω − π) − 1]2 dω (19)

Clearly, with this modi ed objective, by some simple manipulations,
the IIR lter bank design is rewritten compactly as (4) and is thus
solved through the dual SDP (5).

Example: To illustrate the effectiveness of the proposed method,
we simulate a lter bank which comprises the order-4 IIR lters in
comparison a with Butterworth lter bank of the same length [15]. In
contrast to Butterworth method, our approach allows direct control
of transition band width as well as passband ripple and stopband
attenuation. Fig. 2 shows that our designed lters not only possess
better transition band but also are capable of retaining both the at
passband and good stop band attenuation.
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Fig. 2. Frequency response of the analysis lters
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4. QMF BANK SYNTHESIS

In this section, we consider the design of IIR synthesis lters pro-
vided that analysis lters are given. It is shown in [16] that the syn-
thesis lters G0(z), G1(z) must be chosen as

G0(z) G1(z) = G(z) H1(−z) −H0(−z) (20)

with some G(z) such that the H∞-norm of the distortion is mini-
mized:

min
G(z)

‖z−n0 − H(z)G(z)‖∞ (21)

where H(z) = H0(z)H1(−z)−H1(z)H0(−z). Assuming H(z) =
N(z)/D(z) and G(z) = P (z)/Q(z), (21) is equivalent to the fol-
lowing SIP:

min
P (z),Q(z),ε

ε (22)

s.t. 1 − ε ≤ |N(z)|2|P (z)|2
|D(z)|2|Q(z)|2 ≤ 1 + ε, ∀z = ejω

Denoting autocorrelation sequences of the coef cients of |N(z)P (z)|2
and |D(z)Q(z)|2 by p̄̄p̄p and q̄̄q̄q respectively. Since N(z) and P (z) are
known, it can be shown that p̄̄p̄p and q̄̄q̄q are linear function of ppp and qqq,
viz. p̄̄p̄p = CCCppp − eee and q̄̄q̄q = DDDqqq − eee.

Besides, it should be noted that minimizing the following quadratic
function:

min
p̄̄p̄p,q̄̄q̄q

α1

∫ π

0

ϕϕϕT
n (ω)p̄̄p̄p −ϕϕϕT

n (ω)q̄̄q̄q
2

dω + α2

∫ π

0

ϕϕϕT
n (ω)q̄̄q̄q

2

dω

(23)
makes the rational function (ϕϕϕT

n (ω)p̄̄p̄p + 1)/(ϕϕϕT
n (ω)q̄̄q̄q + 1) smooth

and close to 1, thus also minimizing ε. Now, with the augmented
variable xxx = [ppp,qqq]T , we can rewrite (22) as min

xxx∈R2(n+1)
xxxTQQQxxx +cccTxxx

subject to AAAixxx + dddi ∈ C∗
0,π, i = 1, . . . , 4 which again belongs to

the optimization class (4) and then is solved through the SDP (5).
Example: In this example, we design the synthesis bank pro-

vided that the analysis bank consists of two Chebyshev lters:

H0(z) =
0.1412 + 0.3805z−1 + 0.3805z−2 + 0.1412z−3

1 − 0.3011z−1 + 0.3694z−2 − 0.0250z−3

and H1(z) = H0(−z). The magnitude response of the synthesis
bank of order 7 is presented in Fig. 3. Note that the magnitude
responses of the designed lters of order 7 are already better than
those of order 14 and 15 in [11] and [17]. It should be not surprised
because our solution is globally optimal while the solutions given
by [11] and [17] are locally optimal only in their class.

5. CONCLUSION

In this paper, a new form of FS-KYP lemma has been derived for
both analysis and synthesis/dsign purposes. The attractive feature of
the proposed FS-KYP lemma is that the resultant SDP is of minimal
order, thus enabling high dimensional problems to be solved ef -
ciently using general purpose solvers on a standard PC. Numerous
IIR lter bank design problems have been formulated as reduced-
order SDP and successfully demonstrated by a number of numerical
examples.
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