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Abstract— Power-symmetric IIR lters have in the past
been used in two-channel lter banks. If appropriately
designed, such lters have allpass polyphase components,
and this induces useful properties in the lter bank. For
example, IIR orthonormal lter banks have in the past
been designed in this way, and generate orthonormal
basis functions. In this paper we study some theoretical
properties of IIR power symmetric lters in a more
general perspective. This includes the derivation of a
general analytical form, and a study of pole locations.1

Index terms: Power symmetric lters, lter banks, IIR
lters, orthogonal waveforms.

I. INTRODUCTION

In the early days of lter bank theory, a particular class
of IIR two channel lter banks was proposed by a number
of authors, in which the two polyphase components were IIR
allpass lters [4], [6], [7]. The analysis lters [G(z),H(z)]
in this system have the form

G(z) =
a0(z2) + z−1a1(z2)

2
(1)

and H(z) = G(−z), where a0(z) and a1(z) are causal
stable allpass lters. The synthesis lters can be chosen to
have perfect reconstruction, in which case they are noncausal
stable lters [4]. More commonly however, they are chosen
such that aliasing and magnitude distortion are eliminated, the
remaining phase distortion being acceptable in certain appli-
cations such as speech coding [5]. This system is described
in considerable detail in Chap. 5 of [5], and it is well-known
that Butterworth and elliptic lters can be represented as in
Eq. (1) if their speci cations are appropriately constrained.

A lter which has the form (1) satis es the property

G̃(z)G(z) + G̃(−z)G(−z) = 1 (2)

where G̃(z) = G∗(1/z∗). This is called the power-symmetric
property. The name comes from the fact that if G(z) is
lowpass with real coef cients then |G(ejω)|2 has a certain
symmetry with respect to ω = π/2 (e.g., its passband and
stopband ripple sizes are identical, as demonstrated later in
Fig. 2(a)). Power symmetry induces useful properties in the
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lter bank. For example, IIR orthonormal lter banks have in
the past been designed in this way, and generate orthonormal
basis functions.

Not all power-symmetric lters can be expressed as in Eq.
(1), because the form (1) also implies that the numerator
P (z) of G(z) satis es Hermitian symmetry, that is, p∗N−n =
ejεpn, for integer N and real ε. For example in the real
coef cient lowpass case P (z) is symmetric (pN−n = pn).
Conversely, it is shown in [5] (Theorem 5.3.1) that for the
real coef cient case if G(z) is power symmetric and has the
said numerator symmetry, then it can be expressed as in Eq.
(1). More generally a similar result is also true for complex-
coef cient lters. Notice that Eq. (1) implies in particular that
the denominator of G(z) is a function of z2, that is, it only
has even powers of z.

In this paper we present some deeper properties of power-
symmetric lters which have hitherto not been noticed. This
includes the general analytical form of such lters (Sec.
II), and pole locations (Sec. III). While a limited amount
of results on these aspects have been reported earlier (as
reviewed in [5]) the material presented here appears to
have escaped attention. Given the importance of orthonormal
bases in many applications such as data compression, digital
communications, and MIMO radar [3], these properties can
be of considerable interest.

Unless mentioned otherwise, all notations are as in [5].
The discussions here are not restricted to the case of real
coef cients lters.

II. NECESSARY AND SUFFICIENT CONDITIONS

We will nd it convenient to express G̃(z)G(z) in the form

G̃(z)G(z) =
1

1 + R̃(z)R(z)
(3)

where R(z) is rational. If G(z) is an IIR rational transfer
function with |G(ejω)| ≤ 1, then we can always write it as
in (3). To see this, just observe that

R̃(z)R(z) =
1

G̃(z)G(z)
− 1 (4)

Since |G(ejω)| ≤ 1 it follows that

1

|G(ejω)|2 − 1 ≥ 0
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This implies that the right hand side of (4) has rational
spectral factors, and we just have to take R(z) to be one such
factor. Thus the form Eq. (3) is justi ed as long as |G(ejω)| ≤
1. In fact digitial Butterworth, Chebyshev, and Elliptic lters
are often introduced in the form (3), and the lter properties
are governed by the way in which R(z) is chosen [1], [2].
A natural question is, what are the conditions on the rational
form R(z) which make G(z) a power-symmetric lter? This
is answered next.

Lemma 1. Power symmetry and R(z). The rational lter
G(z) in Eq. (3) satis es G̃(z)G(z) + G̃(−z)G(−z) = 1 if
and only if

A1(z)
Δ
=R(z)R(−z) (5)

is allpass, or equivalently

A2(z)
Δ
=R̃(z)R(−z) (6)

is allpass. ♦

Proof. From Eq. (3) we have

G̃(z)G(z) + G̃(−z)G(−z)

=
1

1 + R̃(z)R(z)
+

1

1 + R̃(−z)R(−z)
=

K(z) + 1

K(z) + R̃(z)R(z)R̃(−z)R(−z)
where K(z) = 1 + R̃(z)R(z) + R̃(−z)R(−z). Clearly
this is unity if and only if

R̃(z)R(z)R̃(−z)R(−z) = 1 (7)

This condition can be rewritten as Ã1(z)A1(z) = 1 (i.e.,
A1(z) is allpass) or equivalently as Ã2(z)A2(z) = 1.
This proves the desired result. ���

II.1 Analytical form for R(z)

Based on the preceding result it is possible to develop
a simple analytical form for R(z). More speci cally we
will show that the results in Lemma 1 can be strengthened
considerably as follows:

Theorem 1. Power symmetry and R(z). A rational lter
G(z) satis es G̃(z)G(z) + G̃(−z)G(−z) = 1 if and only if
we can write

G̃(z)G(z) =
1

1 + R̃(z)R(z)
(8)

where R(z) has the form

R(z) =
z−N B̃(−z)
B(z)

=

N∏
k=1

(
p∗k + z−1

1− pkz−1

)
(9)

for some B(z) = 1 +
∑N

n=1
bnz

−n. This condition can
also be expressed by saying that R(z)R(−z) is allpass, or
equivalently that

R̃(z)R(−z) = (−1)N (10)

for all z. ♦

For the real-coef cient case (9) becomes

R(z) =
(
σ + z−1

1− σz−1

)� L∏
k=1

(
dk + ckz

−1 + z−2

1− ckz−1 + dkz−2

)
(11)

where σ, ck, dk are real, and N = 2L+ �.

Proof of Theorem 1. Assume that p is a pole of the
rational function R(z). Since (5) is allpass, it follows
[5] that 1/p∗ is a zero of this function. So 1/p∗ must
be a zero of either R(z) or R(−z). If it is a zero of R(z)
then R(z) has the allpass factor (−p∗+z−1)/(1−pz−1)

which does not contribute to the product R̃(z)R(z) in
Eq. (3). Assuming such redundant allpass factors have
been removed from R(z) we see that whenever p is a
pole of R(z), then 1/p∗ is a zero of R(−z), that is
−1/p∗ is a zero of R(z). Thus R(z) has the form

R(z) =

N∏
k=1

(
p∗k + z−1

1− pkz−1

)
(12)

There is no need to include a constant unit magnitude
scale factor above, because it would cancel in the
product R̃(z)R(z) in Eq. (3). Equation (12) is readily
rewritten as R(z) = z−N B̃(−z)/B(z) which means
that the allpass lter in (6) simpli es to A2(z) =

R̃(z)R(−z) = (−1)N indeed. ���

III. POLES OF POWER SYMMETRIC FILTERS

For the case of power-symmetric Butterworth and elliptic
lters the poles of G(z) are all on the imaginary axis [5].

This property is a special case arising from the following
lemma, which relates the poles of G(z) to those of R(z).

Lemma 2. Poles of power symmetric lters. Let G(z) be
a rational, real coef cient, power symmetric lter, so that
R(z) has the form (9). Assume that all the poles of R(z)
are restricted to be on one side of the imaginary axis (all
of them in the left half plane (LHP) or all of them in the
right half plane (RHP), with none on the imaginary axis),
as demonstrated in Figs. 1(a),(b). Then all the poles of the
power symmetric lter G(z) are restricted to be imaginary
(see Fig. 1(c)). ♦
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Figure 1. (a)–(c) Pertaining to the poles of power symmetric
lters (Lemma 2).

Proof. Since power symmetry of G(z) implies (10), Eq.
(8) can be rewritten as

G̃(z)G(z) =
1

1 + (−1)NR(z)
R(−z)

(13)

At a pole of G(z) the denominator of the above expres-
sion is zero, that is,

R(z)

R(−z) = −(−1)N (14)

In view of the real-coef cient assumption we have
R(−jy) = R∗(jy) for any real y. On the imaginary
axis of the z-plane we therefore have∣∣∣ R(jy)

R(−jy)
∣∣∣ = ∣∣∣ R(jy)

R∗(jy)

∣∣∣ = 1

That is, the quantity R(z)/R(−z) has unit-magnitude
on the imaginary axis, analogous to a continuous time
allpass lter [5]. If R(z) has all its poles on the LHP,
then, in view of the modulus property [5], it follows that∣∣∣ R(z)

R(−z)
∣∣∣{> 1 in the LHP
< 1 in the RHP
= 1 on the imaginary axis

The condition (14) can therefore only be satis ed on the
imaginary axis. If all the poles of R(z) are on the RHP
instead, the argument would be identical. ���

III.1. Cases with poles not on imaginary axis
There are power symmetric lters with poles not on the
imaginary axis. For example recall that lters of the from

G(z) =
a0(z2) + z−1a1(z2)

2
(15)

where a0(z) and a1(z) are rational allpass lters, are power
symmetric (and the numerators satisfy Hermitian symmetry).

If ak(z) have negative real poles pi, then the poles of
G(z) are purely imaginary (= ±j

√
|pi|). But if ak(z) have

aribtrary poles then G(z) has poles not restricted to the
imaginary axis, though they are still symmetric with respect
to the imaginary axis. An example would be the power
symmetric lter

G(z) =
1

2

(
0.25− z−2

1− 0.25z−2

)
+
z−1

2

(
0.04− z−2

1− 0.04z−2

)
(16)

The poles of G(z) are real and occur at z = ±0.5 and z =
±0.2. If, on the other hand, the power symmetric lter is

G(z) =
1

2

(
0.25 + z−2

1 + 0.25z−2

)
+
z−1

2

(
0.04 + z−2

1 + 0.04z−2

)
(17)

then the poles are imaginary and occur at z = ±0.5j and
z = ±0.2j.

We now consider two special cases of Lemma 2, namely
elliptic and Butterworth power-symmetric lters. Chebyshev
lters cannot be power symmetric because of inherent lack

of symmetry (they have ripples only in one band).

III.2. Elliptic power symmetric lters
For elliptic lowpass lters R(z) has the form [5]

R(z) =
(

1− z−1

1 + z−1

)� m∏
k=1

(1− z−1ejθk )(1− z−1e−jθk )

(1− z−1ejωk )(1− z−1e−jωk )

where � = 0 for even order lters and unity for odd order
lters. Thus R(z) has all its poles and zeros on the unit circle.

The poles are at the frequencies ωk and represents the unit
circle zeros of G(z). The zeros are at the frequencies θk and
represents the passband maxima of G(z) as demonstrated in
Fig. 2(a).

ω

1

π/2

2G (e     )jω

(a)

ω1ω2 ω   = π5θ2 θ1
…… θ  

= 0 
5

zeros of G(z),
or poles of R(z)

(b)

z-plane

zeros of R(z)

1

Figure 2. (a) Example of a power symmetric elliptic lter
(magnitude square response), and (b) the poles and zeros of
the corresponding R(z).

The passband maxima are in the range 0 ≤ ω < π/2 and
the stopband zeros are in the range π/2 < ω ≤ π. Thus
the quantities ωk are in the left half of the z-plane and the
quantities θk are in the right half plane. The poles and zeros
of R(z) are therefore in the LHP and RHP respectively as
demonstrated in Fig. 2(b). The conditions of Lemma 2 are
therefore satis ed, which explains why the poles of these
elliptic lters are on the imaginary axis.
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III.3. Butterworth power-symmetric lters

For IIR Butterworth power-symmetric lowpass lters, all
zeros are at z = −1. So R(z) has the form

R(z) =
(

1− z−1

1 + z−1

)N
(18)

where N is the order of the lter. All poles of R(z) are in the
right half plane, so the poles of G(z) are all on the imaginary
axis (Lemma 2 ). Substituting (18) into Eq. (3) we see that

G̃(z)G(z) =
(1 + z−1)2N

(1 + z−1)2N + (−1)N (1− z−1)2N
(19)

For example if N = 1 this reduces to

G̃(z)G(z) =
z + 2 + z−1

4

which yields the spectral factorG(z) = (1+z−1)/2. The rst
order Butterworth power symmetric lter therefore reduces to
an FIR lter. For N = 2 we have

G̃(z)G(z) =
(1 + z−1)4

2(1 + 6z−2 + z−4)

from which we can identify a causal stable spectral factor

G(z) =
(1 + z−1)2√
2(1 + ρz−2)

where ρ = 3 − √8 ≈ 0.1716. This is the second order
Butterworth power symmetric lter. The matlab command
butter(N, 0.5) produces a power symmetric Butterworth lter
of order N , and the denominator is a function of z−2. For
N = 9 the magnitude response is shown in Fig. 3.
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Figure 3. Magnitude response of the 9th order IIR power
symmetric Butterworth lter.

The transfer function is

G(z) =
c(1 + z−1)9

D(z)

where c is a nonzero constant. Furthermore, since G(z)
satis es the conditions of Theorem 5.3.1 in [5], it can be
written as a sum of two allpass polyphase components:

G(z) =
a0(z2) + z−1a1(z2)

2
=
z−4β0(z−2)

2β0(z2)
+
z−5β1(z−2)

2β1(z2)

where

β0(z) = 1 + 0.3644z−1 + 0.0104z−2,

and
β1(z) = 1 + 0.8366z−1 + 0.09336z−2.

IV. CONCLUDING REMARKS

One question still remains. Is the converse of Lemma 2
true? That is, if a power symmetric lter has all its poles
on the imaginary axis, then does it imply that R(z) has all
its poles located entirely on one side of the imaginary axis?
The answer is in the negative, as shown by counter examples.
Thus consider the power symmetric lter G(z) given by

1

2

(
0.7 + z−2

1 + 0.7z−2

)(
0.9 + z−2

1 + 0.9z−2

)
+
z−1

2

(
0.2 + z−2

1 + 0.2z−2

)
The poles are on the imaginary axis of the z-plane at the
points

±j
√

0.2, ±j
√

0.7, ±j
√

0.9

The poles of R̃(z)R(z) can be computed from here, and it
can be veri ed that two of these poles are at the locations
z = −1 and

z = 0.1364 + 0.7348j

(or its reciprocal conjugate location). Thus the poles of R(z)
are not restricted to be in one half-plane though G(z) has all
poles on the imaginary axis.

While the results presented in this paper have mostly
been theoretical, a general study of power symmetric lters
has not been presented earlier in the literature. Since power
symmetric lters generate orthonormal bases (when used in
lter banks) these results can be of interest in situations where

such IIR bases have to be generated ef ciently.
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