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ABSTRACT

In this paper, Distributed Arithmetic (DA) has been used to 
implement a fully parallel LUT-based DA wavelet filterbank with 
interlaced input registers. In our scheme, decimation has been 
seamlessly integrated into the filter structure to achieve the same 
throughput performance as polyphase-based filterbanks. However,
because partitioning of the filters is avoided, our scheme gives
more flexibility to implement the LUT-DA structure, and 
consequently, lets designers maximize area utilization on LUT-
based FPGAs. Our architecture has been designed for orthonormal 
and biorthogonal wavelets, and implemented on an Altera Stratix II 
FPGA. Significant reduction in terms of area requirements and 
increased throughput performance are achieved when compared to 
other DWT filterbanks based on DA, convolution or the lifting 
scheme.

Index Terms - Wavelet transforms, distributed arithmetic, field 
programmable gate arrays.

1. INTRODUCTION

In the last few years, there has been a growing trend to implement 
DSP algorithms on Field Programmable Gate Arrays (FPGAs), 
because FPGAs offer higher level of parallelism than traditional 
processors. In this sense, Discrete Wavelet Transform (DWT), a 
relatively new computationally-intensive signal transform that is 
being increasingly applied to many areas of signal processing, has 
been explored and several architectures have been proposed to 
achieve more attractive performance/cost trade-offs on FPGAs. 

However, complexity of DWT is still a major challenge for the 
industry and research community in applications where the 
traditional Discrete Cosine Transform (DCT) is the preferred tool
due to its lower computing requirements. Thus, developing area-
efficient and low-power DWT architectures is a key task.  

In this effort, we have developed a flexible filterbank 
architecture for one- and two-dimensional Discrete Wavelet 
Transforms (1D- and 2D-DWT) based on the very well-known 
Distributed Arithmetic (DA) technique, which exploits the Look-
Up Table (LUT)-based FPGA structure to build a multiplier-less 
filterbank, the core component in a DWT structure. With the help 
of a special memory arrangement and an interlaced structure at the 
input, the downsampling stage is seamlessly realized inside the 
filterbank structure. With this scheme, our implementation
achieves the same throughput performance of regular polyphase 
filterbanks, getting a resultant sample at every clock cycle. 
However, the polyphase approach presents some disadvantages 
when applied on LUT-based devices such as FPGAs, given that in 

many cases filter partition requires the filterbank be implemented 
with 2- or 3-input LUTs. This typically achieves suboptimal area 
utilization. In that sense, our scheme offers superior flexibility, 
letting designers choose a more appropriate LUT unit (4- or 6-input
LUT) according to the targeted device. The result is optimal area 
utilization and, consequently, reduced area requirements.

The proposed filterbank architecture have been designed using 
8-tap and 9/7 Daubechies wavelets in Simulink (DSP Builder) and 
Altera Quartus II, and implemented on an Altera Stratix II FPGA. 
To assess performance, simulations with several standard images 
have been carried out in a 2D-DWT scenario. 

2. PREVIOUS WORK

There are two main approaches to implement DWT: convolution-
based and the lifting methods. Convolution-based methods are 
mainly based on Mallat’s pyramid algorithm [1], which 
decomposes the input signal into frequency subbands. This 
structure can be realized as a filterbank built by means of cascaded 
Quadrature Mirror Filters (QMF). For a 1D-DWT, it translates to 
high- and low-pass filter pairs followed by a decimation stage. The 
basic structure can be cascaded from the low-pass filter to have 
several levels of transformation (figure 1(a)).

From the previous structure, 2D-DWT with N levels of 
transformation can be achieved by alternating row and column 
filtering in each level with iteration from the LL (low-pass/low-
pass) subband, as shown in figure 1(b).

Based on these basic structures, several approaches have been 
proposed to overcome area/bandwidth limitations imposed by 
direct implementation of the filterbank. Representative
implementations are presented by Kotteri [2] and Masud et al. [3]. 

Sweldens [4] presented an alternative method, known as the 
lifting scheme, which consists of splitting the signal into two parts 
and then finding a correlation between both to get rid of redundant 
operations. Thus, the number of computations is approximately
reduced by a factor of 2 in comparison to convolution-based
schemes. This is because the polyphase nature of DWT is 
seamlessly coupled into the lifting scheme. 

Several techniques have been applied to improve the two main 
methods. Among them, exploiting the polyphase nature of wavelets 
is an optimal way of increasing the frequency and getting twice the 
throughput in the convolution approach [2]. Another useful 
technique has been the utilization of multiplier-less filterbanks to 
avoid expensive multipliers. For instance, Kotteri [2] used Canonic 
Sign Digit (CSD) representation. Zhou et al. [5] proposed the use 
of Distributed Arithmetic to build the filterbanks in the 2D-DWT; 
and Al-Haj [6] presented different versions of DA-based 1D-DWT 
architectures from serial to fully parallel. 
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Fig. 1. Two-level DWT: a) 1D-DWT, b) 2D-DWT.

In this work, we show that an interlaced arrangement of the 
input registers can replace the traditional polyphase formulation, 
adding more flexibility to design the LUT structure in the DA 
scheme while keeping the same computing effort in terms of 
number of clock cycles. 

3. DA-BASED DWT

As shown in figure 1, DWT can be efficiently implemented by 
using cascaded QMFs, which are comprised of elementary pairs of 
high- and low-pass FIR filters followed by a decimation stage.

However, the direct approach of discarding every other sample 
after filtering to decimate the result is suboptimal. An improved 
approach integrates the decimation into the filter structure by 
modifying the input accordingly, as shown in equation (1). 
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Where:
x and y are the input and filtered data, respectively.
ak is the set of constant filter coefficients.
K is the number of taps of the FIR filter.

The first remark is that equation (1) can be efficiently realized 
by means of an interlaced arrangement of the input registers, as 
shown in figure 2. Optimality in terms of throughput is easily 
achieved, given that two samples are injected simultaneously into 
the filter structure. From this, there exists a well-known approach, 
known as polyphase technique [2], which consists in splitting the
filter H(z) into even and odd coefficients. This technique is useful
for reducing area requirements on FPGA architectures for instance, 
where LUT requirement grows exponentially with the filter order. 

We propose an alternative approach from figure 2. We basically 
avoid the polyphase filter partition by directly replacing the filter
H(z) with a multiplier-less structure such as DA. We will show
later that this simple approach may replace the traditional
polyphase methodology, achieving similar throughput but

Fig. 2. 8-tap FIR filter with interlaced input registers.

reduced area requirements.
In the remainder of the section, we will detail the mathematical 

foundations of DWT in the two-dimensional case only. A similar 
approach for the one-dimensional case easily follows.

Equation (1) can be modified to reflect the cascade structure of 
the 2D-DWT, and the approximation and detail wavelet coefficient 
decomposition. The latter simply corresponds to low-pass and 
high-pass filter outputs in the two-subband decomposition scheme.  
It is shown in equation (2).
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Where:
i = 1,…,2j represents the row- or column-wise stage, / 2i  is the 
current transformation level, and j is the total number of 
transformation levels.
lk and hk are sets of low-pass and high-pass filter coefficients. 
cn(i) is the set of approximation wavelet coefficients at the ith row-
or column-wise stage. At the first stage: cn(0) = x[n], where x[n] is 
the set of input samples of the original signal.
dn(i) is the set of detail wavelet coefficients at the ith row- or 
column-wise stage. 
K1 and K2 are the number of taps of the low- and high-pass filters, 
respectively. For orthonormal wavelets K1 = K2.

However, a parallel implementation of equation (2) would 
require (K1+K2) multipliers, which results in highly expensive 
implementations. To alleviate this problem several multiplier-less 
schemes such as DA have been proposed.         

DA appeared as a very efficient solution especially suited for 
LUT-based FPGA architectures. This technique, first proposed by 
Croisier et al. [7], is a multiplier-less architecture based on an 
efficient partition of the function in partial terms using 2’s 
complement binary representation of data. The partial terms can be 
pre-computed and stored in LUTs. The flexibility of this algorithm 
on FPGAs permits everything from bit-serial implementations to 
pipelined or fully parallel versions of the scheme.

In a parallel DA scheme, inputs are normally expressed in 2’s 
complement binary representation with the sign bit to the left of the 
radix point. Thus, an M-bit input is expressed as follows:  
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Where bn,m {0,1} represents the mth-bit of x[n].
By replacing equation (3) in the general 2D-DWT formulae in

equation (2), we obtain:
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Where bn,m(i) {0,1} represents the mth-bit of the approximation 
wavelet coefficient cn(i) at the ith row- or column-wise stage.
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From these equations, we observe that function Lm may take one 
of 12K possible values and Hm may take one of 22K possible values, 
given that bn,m(i) {0,1}, and that those values correspond to all 
possible sum combinations of low-pass filter coefficients, in the 
case of Lm, and high-pass filter coefficients, in the case of Hm.
These values can be pre-computed and stored in LUTs or 
memories, and addressed by bn,m(i) (see figure 3). This way, the 2D-
DWT algorithm based on FIR filters is reduced to LUT accesses 
and summations.

Fig. 3. Basic 4-input LUT DA unit for the function Lm.

Polyphase could be applied to equations (4) and (5) to double 
the throughput at a small increase in the area requirements. 
However, instead of applying polyphase, we propose the use of the 
interlaced register arrangement, shown in figure 2, on inputs in 
equations (4) and (5). This way, the basic LUT DA filter structure 
would consist of the interlaced input registers, the LUT structure, 
and an adder-tree unit, which completes the operation with scaled 
summation of LUT values (see figure 4). Also, in a 2D scenario, 
we would have a memory block. Because images are normally
available in memory before processing, it is possible to take 
advantage of decimation in eq. (4) and (5) and process two input 
samples concurrently to obtain an output sample every clock cycle.
For this purpose, the memory unit has been divided in two blocks: 
one for even samples and another for odd samples.

Given that partition of filters is avoided in this scheme, the LUT
structure can be more flexibly adapted to a given platform, such as 
the 4-input LUT FPGAs.

Fig. 4. Basic LUT DA filter with interlaced input registers.

The proposed LUT DA filter architecture with interlaced input 
registers can be efficiently applied to both orthonormal and 
biorthogonal wavelets. In figure 5(a), the new scheme is shown for 
the case of an 8-tap orthonormal wavelet. It is worth noting that, 
given identical order of high- and low-pass filters in orthonormal 
basis (K1 = K2 in equations (4) and (5)), input registers can be 
shared by both filters to achieve further area savings.

In figure 5(b), the proposed architecture is shown for the case of

(a)

(b)
Fig. 5. Parallel DA filter structure with interlaced input registers: 

a) 8-tap low- or high-pass filter of an orthonormal filterbank, 
b) 9-tap low-pass filter of a biorthogonal filterbank.

a 9-tap biorthogonal wavelet filter (e.g., the low-pass filter 
component of a 9/7 Daubechies wavelet). Symmetry (or anti-
symmetry) of biorthogonal filters has been exploited to reduce 
LUT requirement by almost half.

Schemes in figure 5 efficiently implement the 2D-DWT of 
equations (4) and (5), or the 1D-DWT. In a 2D-DWT scenario, c2n
and c2n-1 would correspond to even and odd pixels of an image in 
the first transformation level. In following transformation levels, 
those values would correspond to previously computed even and 
odd wavelet coefficients. 

The main advantage of the proposed filterbank architecture is 
that permits optimal area utilization because it can be more easily 
adapted to a given LUT-based architecture. For instance, a 4-tap 
orthonormal filterbank would require 2-input LUTs when 
partitioned with a strategy such as polyphase, whereas our 
architecture can be directly implemented with 4-input LUTs. In this 
case, the flexibility of our architecture permits easier adaptation 
and maximal area usage on most common FPGA devices based on 
4-input LUTs. Similarly, in a 9/7 biorthogonal wavelet case, 
polyphase would require 2- and 3-input LUTs for the low-pass 
filter and 2-input LUTs for the high-pass filter, whereas our 
scheme needs 4- and 1-input LUTs for the low-pass filter and 4-
input LUTs for the high pass filter. Again, it makes our approach 
ideal for 4-input LUT FPGAs when implementing low-order 
filterbanks, as is the general case in DWT. 

4. IMPLEMENTATION 

To evaluate performance, the proposed DA-based architecture for 
the DWT filterbank has been implemented using 8-tap and 9/7 
Daubechies wavelets in Simulink (DSP Builder) and Altera 
Quartus II. The targeted device was the EP2S15F484C3, an FPGA 
of the Altera Stratix II family. Architectures shown in figure 5, 
corresponding to fully parallel LUT-based DA filterbanks using 
orthonormal and biorthogonal wavelets, were tested with several 
grayscale images and the results corroborated with Matlab code. 
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Precision of inputs and outputs was fixed to 8 bits, and coefficients 
were scaled to signed integer numbers and rounded to 9 bits 
precision. Additionally, DC level shifting was applied to the input
image to have an input range of [-128, 127]. Enough bit precision 
in the addition of intermediate results was taken into account to
avoid overflow, and the results were rounded/saturated to 8 bits. 
Finally, these results were shifted to the left by 9 bits to correct the
initial coefficient scaling and DC level shifting.

Table 1 shows performance of proposed architecture for both 
orthonormal and biorthogonal Daubechies. We present area 
requirements for one level of transformation of 1D-DWT (see 
figure 1(a)) or one row filtering stage of 2D-DWT (see figure 1(b)).

9/7
Daubechies

8-tap
Daubechies

LEs 495 614LUT-
based DA Max. frequency 144.9 MHz 149.3 MHz
Table 1. Performance in terms of LEs (Logic Elements) and 

maximum frequency of proposed LUT DA wavelet filterbank.

Table 2 shows that our architecture achieves superior 
performance in both area and maximum operating frequency when 
compared against previous proposals for 9/7 Daubechies. As we 
can see, the closest results are presented in [8], which implemented 
pipelined lifting-based filterbanks. Although the area-efficient 
version in [8] presents area requirements comparable to our LUT-
based scheme, its maximum frequency represent approximately 
one third of our results. Similarly, although its pipelined version
achieves similar maximum frequency, it increases area by 55% in 
comparison to our implementation. As pointed out by [2], although 
the lifting scheme involves fewer operations, it requires increased
coefficient and output precision to achieve a given performance 
level. These increased requirements finally make lifting-based 
implementations slower and bigger in hardware platforms. In [3] 
the authors presented a time-multiplexed approach that similarly to 
our biorthogonal scheme takes advantage of the filter decimation
and coefficients symmetry. In our case, however, DA represents a 
more efficient multiplier-less technique that fully exploits the LUT-
based FPGA structure. Nevertheless, we should note that compared 
designs were implemented on older Altera and Xilinx FPGA 
devices, which could have reduced their performance to some 
degree in comparison to our implementation.

Area (LEs) Max.  frequency
LUT-based DA 495 144.9 MHz

Lifting scheme [8] 480 44 MHz
Pipelined lifting scheme [8] 766 157 MHz

Time-multiplexed [3] 785 85.5 MHz
Table 2. Comparison with previous architectures for 9/7 

biortoghonal wavelet filterbank. 

Additionally, we tested several 512x512 grayscale images with 
a forward and inverse DWT implementation based on the proposed 
LUT-based DA filterbank. In this case, a special address generation 
sequence was implemented to arrange partial results from each 
stage into the even and odd sample memory blocks, and in this 
way, to prepare data for dual access for the next stage.

Transformation and reconstruction results of the Lenna image
are shown in figure 6. The performance achieved in terms of PSNR 
(Peak Signal-to-Noise Ratio) is  41.3dB for the first transformation 
level. In comparison with similar approaches, our scheme again 
achieves improved performance. For instance, with the pipelined 
lifting scheme, [8] achieves a lower image quality of 36.9dB, and 

[9], which presents a polyphase DA-based DWT, achieves only 
30.2dB. Our higher PSNR values are due to careful fixed-point 
design, and show that our presented area results are not at the cost 
of the quality of the transform.

Fig 6. Reconstruction results of Lenna image after 
3 transformation levels (original image is on the left). 

5. CONCLUSION

Based on the very well-known Distributed Arithmetic technique, 
we have developed an improved filterbank architecture more 
flexibly adaptable to a given n-input LUT-based FPGA. By 
seamlessly integrating the downsampling process into the filtering 
stage by means of interlaced input registers and avoiding filter 
partition, our DA-based filterbank permits maximal area utilization
on LUT-based FPGAs. Our scheme was applied to both 
orthonormal and biorthogonal wavelets, showing reduced area 
requirements and increased throughput performance. Several tests 
have been carried out in a 2D image compression scenario to show
that our achievements were not at the expense of the quality of the 
transform.
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