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ABSTRACT

A new framework for designing robust adaptive filters is introduced.
It is based on the optimization of a certain cost function subject to
a time-dependent constraint on the norm of the filter update. Par-
ticularly, we will derive a robust variable step-size NLMS algorithm
which optimizes the square norm of the a posteriori error subject to
the constraint on the norm of the filter change. We also show the
link between the proposed algorithm and another one derived using
a robust statistics approach. The algorithm is then tested in different
environments for system identification and acoustic echo cancelation
applications.

Index Terms— Adaptive filters, NLMS algorithm, impulsive
noise, robust filtering, acoustic echo cancellation

1. INTRODUCTION

In real-world adaptive filtering applications, severe impairments may
occur. Perturbations such as background noise and impulsive noise
can deteriorate the performance of many adaptive filters under a sys-
tem identification setup. In echo cancellation, double-talk situations
can also be viewed as impulsive noise sources.

Many different approaches have been proposed in the literature
to deal with this problem [1]– [7]. Most of them are directly or in-
directly related with the optimization of a combination of L1 and L2

norms as the objective function. The former presents a low sensi-
tivity against perturbations and the latter improves the convergence
speed of the adaptive filter. In this work we introduce a new frame-
work for the construction of robust adaptive filters.

First, we introduce the new framework that is based on the op-
timization of a certain cost function subject to a constraint on the
norm of the adaptive filter update. Particularly, when the square of
the a posteriori error is used as the cost function, the result is an-
other algorithm that provides an automatic mechanism for switching
between the normalized least-mean-square (NLMS) and normalized
sign algorithm (NSA). In principle, the algorithms derived with the
new approach and with the robust statistics ideas given in [8] are
equivalent. However, important differences exist with respect to the
assumptions used on each framework. Finally, the performance of
the algorithm is tested under several scenarios in system identifica-
tion and acoustic echo cancellation applications. These results with
others important ones regarding the convergence behaviour of the
algorithm can be found in [9].

We present certain definitions and notation that are used in the
paper. Letwi = (wi,0, wi,1, . . . , wi,M−1)

T
be an unknownM × 1
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linear finite-impulse response system. The M × 1 input vector at
time i, xi = (xi, xi−1, . . . , xi−M+1)

T
, passes through the system

giving an output yi = xT
i wi. This output is observed, but it is

usually corrupted by a noise, vi, which will be considered additive.
In many practical situations, vi = bi + ηi, where bi stands for the
background measurement noise and ηi is an impulsive noise or an
undetected near-end signal in echo cancellation applications. Thus,
each input xi gives an output di = x

T
i wi + vi. We want to find ŵi

to estimate wi. This adaptive filter receives the same input, leading
to an output error ei = di − xT

i ŵi−1. We also define the mis-
alignment vector w̃i = wi − ŵi and the a posteriori error signal
ep,i = x

T
i w̃i + vi.

2. NEW FRAMEWORK FOR DERIVATION OF ROBUST
ADAPTIVE FILTERS

Suppose an adaptive filter has a given estimate of the true system
at a certain time-step. Now, if a large noise sample perturbs it, the
result will be a large change in the system estimate, degrading the
performance of the adaptive filter. To prevent these situations, the
proposed approach is to constrain the energy of the filter update at
each iteration. This can be formally stated as:

||ŵi − ŵi−1||2 ≤ δi−1, (1)

where {δi} is some positive sequence. Its choice will influence the
dynamics of the algorithm. Nevertheless, (1) guarantees that any
noise sample can perturb the square norm of the filter update by at
most the amount δi−1.

Next, a cost function is required and the adaptive filter will be
the result of optimizing this cost function subject to the constraint
(1). Different choices of the cost function and the {δi} sequence
will lead to different algorithms.

2.1. Special Case With the A Posteriori Error Cost Function

Now, we propose to find the updating strategy as:

ŵi = arg min
ŵi∈RM

e2p,i, (2)

subject to the constraint (1).

To perform this optimization, we divide the problem in two cases:
(a) the hypersphere defined by (1) has a non-empty intersection with
the hyperplane defined by ep,i = 0. (b) the hypersphere defined
by (1) has an empty intersection with the hyperplane defined by
ep,i = 0. These situations are graphically shown in Fig. 1 for the
caseM = 2.
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Fig. 1: a) In this case, an infinite number of solutions exists (represented by the dotted line). Out of those solutions, we choose that which provides the lowest
energy in the update. b1) and b2) Two updates, ŵ+

i and ŵ−i , are possible depending on the relative position between the hyperplane and the hypersphere.

In the first case, there is an infinite number of valid solutions.
Among them, we particularly choose that which provides the lowest
energy in the update, i.e., min ||ŵi − ŵi−1||2. As in this case the a
posteriori error is zero, the solution is the popular NLMS algorithm,
i.e.,

ŵi = ŵi−1 + ei
xi

||xi||2 . (3)

This update has to be used at each time-step when the distance
between the point ŵi−1 and the hyperplane defined by ep,i = 0
is smaller than

√
δi−1. It can be easily shown that this is satisfied

when:
|ei|
||xi|| ≤

p
δi−1. (4)

In the second case, when the hyphersphere defined by (1) has
an empty intersection with the hyperplane defined by ep,i = 0, two
different possibilities can be considered as shown in Fig. 1. The
one that leads to the minimum e2p,i should be used as the update
for a certain time-step, as long as (4) is not fulfilled. It can be easily
shown that this could be checked with the sign of the estimation error
(the details are given in [9]). Thus, with the initial condition ŵ0 and
for some {δi}, the new algorithm can be put in a compact way such
as:

ei = di − xT
i ŵi−1,

ŵi = ŵi−1 +min
» |ei|
||xi|| ,

p
δi−1

–
sign(ei)

xi

||xi|| . (5)

2.2. Link With the Robust Statistics Approach

In [1] an adaptive algortihm is derived using a robust statistic ap-
proach [8]. In that work a non-linear function of the error is opti-
mized using a stochastic gradient approach. That function depends
on p(v), the assumed PDF of the disturbing noise. The algorithm de-
rived is similar to that given in (5), but with a time-independent value
of δ and a general normalized factor instead of ‖xi‖. Although the
two algorithm seem to be very similar they are derived under very
different frameworks. Moreover the meaning of δ is quite different
in both cases. In the algorithm given in [1], it is the cutoff of the
noise PDF (we could consider the error PDF, which will give a time-
dependent δ, but this would require the knowledge of the evolution
of the error statistic which could be difficult to have in practice).
Thus, the dynamics (if we consider the error PDF) of the delta se-
quence will be dependent on the PDF assumed in the model. In the
new algorithm, δ is the square of the radius of a certain hypersphere
centered at ŵi−1. At every time-step, the new adaptive filter is al-
lowed to evolve only to a new point inside this hypersphere. As a

consequence, the dynamics of the delta sequence could be absolutely
arbitrary.

It should be noted that the new framework introduced allows
the design of robust adaptive filters without requiring any statistical
information of the noise vi nor the error signal ei. This is probably
the most important difference with the robust statistics approach.

2.3. Choice of the Delta Sequence

The new algorithm has two operation modes: an NLMS with μ = 1
or the NSA with step-size

√
δi−1. However, this last update is only

used when
√
δi−1 < |ei|/||xi||. So we can view the update of the

new algorithm as another NLMS with step-size:

μ′ = min
» √

δi−1
|ei|/||xi|| , 1

–
. (6)

This fact allows us to interpret the new algorithm as a variable step-
size NLMS algorithm. Its step-size belongs to (0, 1]. For this rea-
son, we name the new algorithm as robust variable step-size NLMS
(RVSS-NLMS). It is very clear how the algorithm operates. When
the normalized absolute of the error is smaller than

√
δi−1 the adap-

tive filter acts like a NLMS algorithm with unit step-size. On the
other hand, when

√
δi−1 is exceeded, a large sample noise might

be present and the algorithm acts like a NSA with step-size equal
to
√
δi−1. It should be very clear why a time-independent δ is not

a good option. If δ is too small, the algorithm will be robust but
extremely slow. On the contrary, if δ is large, the robust behavior
is not possible. This is a consequence of the transmission of large
amplitude noise samples to the adaptive filter through the error sig-
nal in the NLMS update. Then we look for a time-dependent delta
sequence.

In principle, one would desire δi to have values as large as po-
ssible at the beginning of the adaptation. This will lead to a good
initial speed of convergence because the NLMS will act in this situa-
tion. Still, it should not be too large, so that the robust performance
against large noise samples is not lost. On the other hand, when the
algorithm is close to its steady-state, lower values of δi will lead to
a lower final error. This behavior can not be achieved using a fixed
parameter δ.

A natural selection should make the sequence {δi} dependent on
the convergence dynamics of the adaptive filter. Thus, we propose:

δi = αδi−1 + (1− α)||ŵi − ŵi−1||2

= αδi−1 + (1− α)min
»

e2i
||xi||2 , δi−1

–
,

(7)
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where 0 < α < 1 is a memory factor. In [9] we proved under very
mild conditions that this sequence converges to zero almost every-
where, and that under the assumption of a stationary environment
the adaptive filter converges with probability one to the true system,
i.e., the adaptive filter estimates the true stationary system with zero
variance if we wait a sufficiently long time.

Based on the dynamics of (7), δi is decreased only when
√
δi−1 >

|ei|/||xi||. In this case, the performed update is the NLMS with
μ = 1. So if the sequence {δi}goes to zero as i → ∞, the above
condition should be satisfied an infinite number of times. The rea-
son why this NLMS algorithm can still have a robust performance
against noise is that these (infinite number of) updates take place
only at the iterations where the error is small enough. Thus, the per-
formance of the NLMS is not compromised even when the update is
done using μ = 1. This property allows the algorithm to outperform
the NLMSwith fixed μ = 1 in both impulsively and non-impulsively
perturbed environments.

3. PRACTICAL CONSIDERATIONS

In this section we discuss certain algorithm implementation issues.
First of all, when the NLMS update is used, a regularization constant
β = 20σ2x is added to the denominator. Also, every time a division
by ‖xi‖ is computed, a small constant ε is added to the denominator
to avoid division by zero. These changes still guarantee that the
constraint (1) is satisfied. The forgetting factor α is chosen according
to the rule of thumb:

α = 1− 1

κM
, (8)

where κ is a parameter that depends on the color of the input signal
and tipically ranges in [1,6].

Finally, a major issue should be considered carefully. As the pro-
posed delta sequence has the decreasing property shown mentioned
in Section 2, although the algorithm becomes more robust against
perturbations, it also loses its tracking capacity. For this reason, if
there is a chance of being in a non-stationary environment, an ad hoc
control should be included. The objective is to detect changes in the
true system. We cannot include the description of this control here
for lack of space. They are presented with detail in [9].

4. SIMULATION RESULTS

The system is taken from a measured acoustic impulse response and
it was truncated to M = 512. Its gain is normalized so that the
input and output powers are equal, i.e., σ2x = σ2y . The adaptive filter
length is set toM in each case. We use the mismatch as a measure
of performance:

10 log10

»‖w̃i‖2
‖wi‖2

–
. (9)

The plots are the result of single realizations of all the algorithms
without any additional smoothing. A zero-mean Gaussian white
noise bi is added to the system output such that a certain SBNR is
achieved:

SBNR = 10 log10

»
σ2y
σ2b

–
, (10)

where σ2b is the power of the background noise.
The behavior of the proposed algorithm is compared with other

strategies. We simulate an NLMS algorithm with μ1 = 1 and a
regularization factor β = 20σ2x and a NSA algorithm:

ŵsign
i = ŵsign

i−1 + μ2 sign(ei)
xi

||xi||+ ε , (11)

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

x 10
5

60

50

40

30

20

10

0

10

M
is

m
at

ch

Iteration number

NLMS μ
1
 = 1

Sign algorithm μ
2
 = 6e 005

Proposed RVSS NLMSSIGN

NLMS

RVSS NLMS

Fig. 2: Mismatch (in dB). AR1(0.8) input. No impulsive noise. SBNR=40
dB. The curves are the result of a single realization of the algorithms.

with the μ2 value that gives the same steady-state mismatch as that
of the proposed RVSS-NLMS.

We also tried different schemes proposed in the literature [3]–
[7] but as the results were not good under the experimental setup
chosen here, we decided not to show them. Another possibility
is to include the algorithm derived in Section 2 with a fixed time-
independent δ. However, it should be clear that this will lead to a
slow robust performance or a fast non-robust performance (this was
already discussed in Section 2).

4.1. System Identification Under Impulsive Noise

The input process is an AR1 with pole in 0.8. In addition to the back-
ground noise bi, an impulsive noise ηi could also added to the output
signal yi. The impulsive noise is generated as ηi = ωiNi, where ωi

is a Bernoulli process with probability of success P [ωi = 1] = pimp

and Ni is a zero-mean Gaussian with power σ
2
N = 1000σ2y . A su-

dden change in the true system is introduced at a certain time-step
by multiplying the system coefficients by -1.

In Fig. 2, no impulsive noise is present. As can be seen, the
NLMS has a good initial convergence while the NSA has a dramati-
cally slow performance. However, the RVSS-NLMS can extract the
good properties of both. It shows the same speed of convergence of
the NLMS but with a 10 dB lower steady-state error. This is possible
because when δi is small enough, the algorithm employs the NLMS
update with μ′ < 1, which allows it to reach a lower steady-state
level.

Then we include the impulsive noise with pimp = 0.1. In Fig.
3, the NLMS with μ = 1 has a positive mismatch (in dB), while the
performance of the other two algorithm remains barely unchanged.
The interesting thing is that the NLMS update with μ = 1 is per-
formed by the proposed algorithm only at the iterations when the er-
ror is small enough. On the other hand, as can be seen from (6), the
larger the error (probably due to the appearance of a large noise sam-
ple), the smaller the value of μ′ used in the update. This allows an
NLMS algorithm to perform robustly against impulsive noise. In [9]
the algorithm was tested in others identification scenarios showing a
very good performance.
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Fig. 3: Mismatch (in dB). AR1(0.8) input. pimp = 0.1. The other parame-
ters are the same as in Fig. 2.

4.2. Acoustic Echo Cancellation With Double-Talk Situations

In echo cancellation applications, a double-talk detector (DTD) is
used to suppress adaptation during periods of simultaneous far- and
near-end signals. A simple and efficient way of detecting double-
talk is to compare the magnitude of the input and output signals and
declare double-talk if the output magnitude is larger than a value set
by the input signal. A proven algorithm that has been in commercial
use for many years is the Geigel DTD [10]. Although the adaptation
is usually inhibited for a certain period of time when double-talk
is declared, we choose to stop it just for a single time-step. If the
algorithm is robust enough to deal with the undetected near-end sig-
nal, this decision will avoid an unnecessary decrease in the speed of
convergence.

The far-end and near-end signals are speech sampled at 8 kHz.
The SBNR is 20 dB while the signal to total noise ratio (STNR),
i.e.,

STNR = 10 log10

»
σ2y

σ2b + σ
2
h

–
,

is set to 0 dB, where σ2h is the power of the near-end signal before
passing through the DTD. As shown in Fig. 4, the NLMSwith μ = 1
is highly affected by the double-talk situation. This is not the case
for the other two algorithms but the RVSS-NLMS performs faster
than the NSA. When the sudden change occurs, the RVSS-NLMS
can track the system with a small delay with respect to the NLMS
while the NSA shows a very poor performance.

5. CONCLUSIONS

A new framework for designing robust adaptive filters was intro-
duced. It is based on the optimization of a certain cost function
subject to a time-dependent constraint ({δi}) on the norm of the
filter update. Particularly, we derived the RVSS-NLMS algorithm
by optimizing the square of the a posteriori error. We showed that
the new algorithm is equivalent to another one derived using a ro-
bust statistics approach. However, the new framework requires no
statistical information about the probability density functions of the
noise nor the error signal. Then, we proposed a certain dynamics
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Fig. 4: Mismatch (in dB) for speech input. SBNR=20 dB. STNR=0 dB.

for {δi} which provides the algorithm with fast initial convergence
as the NLMS with μ = 1 but also a performance against noise as
robust as the NSA. As shown in the simulations, even under severe
conditions, the performance of the algorithm was very good.
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