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ABSTRACT

We extend the technique of instantaneous companding (compress-
ing and expanding) to digital signal processors (DSPs). Compand-
ing has been used for many years in non-dynamical channels, but the
dynamical nature of DSPs causes output distortion in standard im-
plementations of companding, where a compressor and expander are
used at the input and output, respectively, without additionally mod-
ifying the DSP. In the proposed technique, we specify a method for
combining input compression, output expansion, and application of
nonlinear functions internal to the DSP, all in a manner transparent
to the input-output characteristics of the DSP and its A/D interfaces,
thus eliminating distortion in the final analog output. As a result,
all the signals involved span most of the available bits, resulting in
significant improvement in quantization errors and signal-to-noise-
plus-distortion ratios over a large input range. The theory is sup-
ported by simulation and subjective listening tests.

Index Terms— Companding, digital signal processors, discrete
time systems, nonlinear systems

1. INTRODUCTION

For many years, companding (compressing/expanding) techniques
have been successfully implemented in such applications as trans-
mission and sound recording [1, 2]. By compressing the dynamic
range of input signals before transmission or recording, compand-
ing yields high signal-to-noise-plus-distortion ratios (SNDR) over
a large input range, as the transmitted or recorded signal level re-
mains well above the noise in the channel or the storage medium
even at low input levels. The expander at the output restores the
original dynamic range. Recently, companding has been extended
to dynamical systems [3] of the type shown in Fig. 1(a), com-
posed of analog-to-digital converters (ADCs), digital signal proces-
sors (DSPs), and digital-to-analog converters (DACs); the input to
the ADC is, for simplicity, assumed to be an already sampled analog
value. The technique developed in [3] uses the envelopes of signals
in the prototype system of Fig. 1(a) to control the state variables of
a companding system; it was demonstrated that in this way, syllabic
companding may be achieved in a DSP without disturbing the final
output. Unfortunately, that technique is somewhat impractical, be-
cause it essentially requires two implementations of the system: the
prototype system which produces the envelopes, and the compand-
ing system which uses the envelopes to produce the desired output
with low quantization distortion. Also, the technique requires more
than one ADC and DAC, and significant computation to produce the
envelopes and integrate them into the companding system. In this
paper, we explore an alternative technique, in which companding
is achieved through the use of nonlinear time-invariant compress-
ing and expanding functions. These functions are used to create a
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Fig. 1. (a) A system composed of an LTI DSP and its A/D interfaces.
(b) Instantaneous companding added to the system in (a) without
internal correction in the DSP, which will cause output distortion.
(c) Properly companding system using internally nonlinear DSP.

modified, internally nonlinear DSP, which, when combined with the
corresponding compressing ADC and expanding DAC, yield a sys-
tem whose input-output behavior is linear and time-invariant (LTI),
and, in the absence of quantization error, identical to that of the orig-
inal system of Fig. 1(a); the quantization error at the output of the
modified system is significantly lower than that of the original. The
proposed system is thus externally linear and internally nonlinear
(ELIN); analog versions of ELIN systems have been discussed in
[4] and [5]. In essence, the proposed technique is an extension of
instantaneous companding to DSPs, whereas the technique in [3] is
an extension of syllabic companding. It will be shown that the pro-
posed technique avoids many of the problems that plague [3], while
still providing a large (for a given number of bits) SNDR over a large
input range. The ADC and DSP may thus be implemented with rel-
atively few bits, yet still have relatively low quantization distortion,
which is desirable for applications where large amounts of computa-
tion are required, such as multimedia.

2. INSTANTANEOUS COMPANDING APPLIED TO DSPS

To achieve a large SNDR over a large input range, the signal at the
ADC must span most of the available bits, even at low input levels.
It is therefore necessary to compress the input dynamic range before
the ADC, which will be done here using a nonlinear compressing
function g(v), assumed to be odd and invertible. Consequently, the
output of the DAC will also be compressed, so to restore the desired
output, it is necessary to re-expand the dynamic range after the DAC.
In this paper, the expanding function considered will be the inverse
of the compressing function, and will be denoted by g−1(v). When
there is a dynamical system, such as a DSP, between the ADC and
the DAC, simply applying g(v) at the input and g−1(v) at the output,
as shown in Fig. 1(b) , will in general cause unacceptable nonlinear
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distortion in the output. As an example, suppose that the DSP of Fig.
1(a) has input-output behavior given by y(n) = αu(n)+βu(n−k),

and that the desired compression law is g(v) = 3
p

(v), meaning that
g−1(v) = v3. Applying the technique of Fig. 1(b) gives y(n) =

(α 3
p

u(n) + β 3
p

u(n − k))3, which can be rewritten as y(n) =

α3u(n)+β3u(n−k)+3[α2βu(n)
2
3 u(n−k)

1
3 +αβ2u(n)

1
3 u(n−

k)
2
3 ]. The first two terms resemble the desired output, but the gains

are α3 and β3 instead of α and β. The rest of the terms represent
nonlinear distortion. In general, to preserve the original linear input-
output behavior, the DSP must be made internally nonlinear, as is the
case with analog systems [4, 5]. An exact and systematic method for
properly modifying the DSP will be derived below.

To derive a mathematical formulation for introducing the nec-
essary internal changes to the DSP, we need access to the internal
states of the DSP; the input-output description of the DSP’s behav-
ior is therefore insufficient, and we will instead make use of the
state-space description. Consider an LTI discrete-time mth order
system with single input u(n), single output y(n), and state vector
x(n) = (xi(n)). The state equations of this system are of the form:

x(n + 1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

(1)

where A = (aij) is a m × m matrix, B = (bij) is a m × 1 vector,
C = (cij) is a 1 × m vector, and D = (dij) is a scalar. Expand-
ing (1) gives equations (for 1≤i≤m) of the form:

xi(n + 1) =
Pm

j=1 aijxj(n) + biu(n)
y(n) =

Pm
j=1 cjxj(n) + du(n)

(2)

This system will be referred to as the “prototype system”, and corre-
sponds to the system in Fig. 1(a), assuming that the ADC and DAC
are of infinite resolution.

To achieve low quantization distortion, and thus large SNDR,
we require nonlinear instantaneous compression of any digital sig-
nal which is represented by only a few bits. To represent the input,
output, and states with only N bits, where N is assumed to be a small
integer (such as 8), we will create a modified DSP, which we refer
to as the “companding DSP”, with input û(n) = g(u(n)), output
ŷ(n) = g(y(n)), and state vector x̂(n) = (x̂i(n)) = (g(xi(n))).
Substituting for x, u, and y in (2), after some algebra, gives:

x̂i(n + 1) = g(
Pm

j=1 aijg
−1(x̂j(n)) + big

−1(û(n)))

ŷ(n) = g(
Pm

j=1 cjg
−1(x̂j(n)) + dg−1(û(n)))

(3)

This companding DSP has three important features. First, its input,
output and states are all compressed, so representing them with only
N bits will not result in significant quantization errors. Second, its
input is g(u(n)), so it may be gotten by simply applying g() to the
system input u(n), which should be done before the ADC, allow-
ing the signal at the ADC to take advantage of all the available bits.
Third, the output of the companding DSP is g(y(n)), so the system
output y(n) may be recovered exactly, with no distortion, by simply
applying the expanding operation g−1() to the companding DSP out-
put ŷ(n), which should be done after the DAC, allowing the signal
at the DAC to take advantage of all the available bits. The complete,
properly companding system is thus as shown in Fig. 1(c), where
the modified DSP shown in the figure is given by the internally non-
linear, companding DSP specified by (3).

3. IMPLEMENTATION

3.1. Implementation of Companding Functions

For companding in non-dynamical systems, it has been shown [1]
that to obtain an SNDR which is independent of input power, and
thus results in very low noise at low and moderate input levels,
the compression characteristic should be approximately logarithmic.
One standard compression characteristic is the “μ law,” given by [1]:

γ(v) = log(1+μv)
log(1+μ)

, v≥0

γ(v) = −γ(−v), v < 0
(4)

where μ corresponds to the amount of compression. Roughly speak-
ing, increasing μ improves the SNDR for small inputs (thus increas-
ing dynamic range), at the expense of the SNDR for large inputs.
For the rest of this report, all logarithms are assumed to be base 2,
and will thus be written as lg. Also, in equation (4), v, and therefore
also γ(v), are assumed normalized to be between −1 and 1.

We will begin by considering the implementation of (3) in an N -
bit fixed point DSP. To allow for N -bit multiplication, an N -bit DSP
typically supports 2N -bit addition. It is therefore assumed that 2N -
bit numbers may be stored temporarily and added (or subtracted),
but they may not be stored in registers (they may only be used in the
same timestep during which they are generated) and they may not be
multiplied (or shifted). Since 2N bit numbers may be temporarily
used, it will be assumed that inside the DSP, the compressing oper-
ator g() takes a 2N -bit number and returns an N -bit number, while
the expanding operator g−1() takes an N bit number and returns a
2N bit number. Modifying (4) accordingly gives the DSP compres-
sion characteristic which we will use for the remainder of the paper:

g(v) =
2N−1 lg(1+μ v

22N−1 )

lg(1+μ)
, v≥0

g(v) = −g(−v), v < 0
(5)

Inverting (5) gives:

g−1(v) = 22N−1

μ
[(1 + μ)

v
2N−1 − 1], v≥0

g−1(v) = −g−1(−v), v < 0
(6)

Referring back to Fig. 1(c), the analog versions of g() and
g−1() may either be implemented with analog circuitry at the in-
put of the ADC and output of the DAC, as shown in the figure, or
they may be “absorbed” into the ADC and DAC by using a nonuni-
form ADC and DAC. If it is assumed that the original u(n) and y(n)
are normalized between −1 and 1, then u(n) should be multiplied
by 22N−1 before applying g(), and y(n) should be multiplied by

2−(2N−1) after applying g−1(). Clearly, these multiplications can-
cel, and thus don’t change the system’s input-output behavior. The
multiplications should be absorbed into the analog circuitry, giving
g(22N−1v) = 2N−1γ(v) at the input, and 2−(2N−1)g−1(v) at the
output.

In the DSP, the nonlinear functions can be implemented using
lookup tables generated before runtime, for example on a computer.
The compressive nature of g() ensures that x̂(n), û(n), and ŷ(n)
may be stored in N -bit registers without causing too much quan-
tization error. However, g−1(x̂j(n)), g−1(û(n)), and g−1(ŷ(n))
are simply xj(n), u(n) and y(n), respectively, so storing them in
N -bit registers would lead to significant quantization distortion; 2N
bits should therefore be used to temporarily store these numbers.
Unfortunately, it is seen in (3) that g−1(x̂j(n)) and g−1(û(n)) in
general need to be multiplied by the coefficients aij , bi, cj , and d.
To avoid this, these gains are “absorbed” into the lookup tables for
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g−1(v). Specifically, if the desired signal is αg−1(v), the corre-
sponding lookup table will actually output a 2N -bit number which
represents αg−1(v), instead of simply giving g−1(v), which would
then need to be multiplied by α.

Since the g() function takes a 2N -bit integer and returns an N -
bit integer, there are 22N possible inputs, but only 2N possible out-
puts, and therefore 2N distinct table entries. The table is constructed
by choosing 2N of the 2N -bit integers such that each integer v gives
a distinct N -bit g(v). Each entry in the table has a 2N -bit num-
ber v, and a corresponding N -bit g(v); given a particular 2N -bit
input argument a, the table finds the entry whose 2N -bit value v is
closest to a, and then returns the corresponding N -bit output value
g(v). Since every application of g() can use the same lookup table,
only one instance of it needs to be stored in memory. To obtain a
lookup table for g−1(), we flip the input and output columns of the
g() lookup table. To obtain the αg−1() lookup table, we multiply
each entry of the output column by α, and we round the result to
the nearest 2N -bit number. As a result, all the coefficient multipli-
cations are done during the process of generating the lookup tables,
which can be done in any desired precision, such as double-precision
floating point. The resulting lookup table entries are then quantized
to a 2N -bit fixed point representation and transferred to the DSP.

In some cases in a companding DSP, limit cycles can be ob-
served, similar to the ones in conventional DSPs [6]. Indeed, for the
companding system we describe in Section 3.2, we observed low-
amplitude limit cycles, but their effect was inaudible in our audio
tests. We plan to try classical techniques to eliminate these limit
cycles, but we have not done so at this point.

3.2. Example

We will consider the implementation of instantaneous companding
on a reverberator similar to the one which was used as a case study in
[3], which allows us to compare the relative ease of implementation
for the two techniques. The reverberator prototype system consists
of a cascade of two stages, each of which has state equations given
by:

x1(n + 1) = −0.8xk(n) + 0.2u(n)
xi(n + 1) = xi−1(n), 2≤i≤k

y(n) = 1.8xk(n) + 0.8u(n)
(7)

where k = 1999 for the first stage and k = 4411 for the second,
with an assumed sampling rate of 44.1 kHz.

Applying (3) to the state equations of either stage gives:

x̂1(n + 1) = g[−0.8g−1(x̂k(n)) + 0.2g−1(û(n))]
x̂i(n + 1) = x̂i−1(n), 2≤i≤k

ŷ(n) = g[1.8g−1(x̂k(n)) + 0.8g−1(û(n))]
(8)

Note the simplicity of the second equation of (8), which comes from
a k-delay block; for k − 1 of the states in any k-delay block, no
applications of g() are necessary!

The input to the first stage is obtained by applying g() before
the ADC, thus producing û(n), and g−1() is applied after the DAC
(after the second stage) to retrieve y(n) from ŷ(n). The system is
thus as shown in Fig. 1(c), where the modified DSP is given by two
cascaded stages, each given by (8), with k = 1999 for the first stage
and k = 4411 for the second and with g() and g−1() given by (5)
and (6). Note that in contrast to the technique in [3], no copy of the
prototype system is required, no envelope detection is necessary, and
only one ADC and one DAC are required.

Fig. 2. Simultaneous waveforms for a sinusoidal input signal, all
versus time in seconds: (a) Input. (b) State in system of Fig. 1(a). (c)
Corresponding state in companded system of Fig. 1(c). (d) Output
of system in Fig. 1(a). (e) Output of companded system in Fig. 1(c).
(f) Output of system in Fig. 1(b).

3.3. Simulation Results

Matlab/Simulink was used to implement and simulate the prototype
and companding reverberator systems described above. The inter-
nal signals of the non-companding system were optimally scaled for
maximum amplitude inputs. Setting μ = 255, we used 8-bit ADCs
and DACs, implemented the DSPs with 8-bit fixed-point arithmetic,
and ran all three systems in Fig. 1 with the same sinusoidal input.
The systems were observed in steady state. Two cycles of the input
are shown in Fig. 2(a). Fig. 2(b) shows a state in the prototype DSP
of Fig. 1(a). The corresponding “hat” state in the internally nonlin-
ear DSP of Fig. 1(c), shown in Fig. 2(c), is clearly a very different
waveform; both the signal’s level and shape have been modified.
Despite this, the outputs of the systems of Fig. 1(a) and Fig. 1(c),
shown in Fig. 2(d) and Fig. 2(e), are very similar; the difference
between the two is on the order of quantization errors, as expected.
In contrast, the output of the system of Fig. 1(b), shown in Fig. 2(f),
is extremely distorted, looking nothing like the desired output. Thus,
our simulation results have confirmed that the companding technique
shown in Fig. 1(b) is inadequate, and that the significant output dis-
tortion caused by such incomplete companding may be eliminated
by using equation (3) to modify the DSP, and then using the resulting
internally nonlinear DSP as shown in Fig. 1(c). We also see that for
the input of moderate level shown in Fig. 2(a), the state of the proto-
type system, shown in Fig. 2(b), does not span most of the available
bits, and thus is significantly affected by quantization and by the
round-off errors resulting from fixed-point arithmetic operations. In
contrast, the corresponding state in the companding system, shown
in Fig. 2(c), spans most of the available bits, and thus has quantiza-
tion and round-off errors which are significantly reduced relative to
the signal.

The steady-state outputs for the cases of no companding, and
companding with μ = 63 and μ = 255 were observed for sinu-
soidal inputs of various amplitudes; the SNDRs are compared in Fig.
3. The SNDR for the non-companding system varies approximately
in proportion to the input signal. In contrast, for the companding sys-
tems, the SNDR is relatively constant, and at a relatively high value,
over a large range of input levels. Roughly, increasing μ increases
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the dynamic range over which the SNDR is roughly constant, but at
the expense of reducing the peak SNDR. This is as expected since the
number of quantization levels is fixed at 2N , and essentially, larger μ
means that more of these levels are used for small signals, implying
less levels available for large signals. Thus, larger μ does not always
imply “better” output quality; a reasonable balance must be found
between having high dynamic range, for which larger μ is preferred,
and having high peak SNDR, for which lower μ is preferred.

Fig. 3. SNDR for 8-bit implementation, for several values of μ.

We ran all three systems in Fig. 1 on audio inputs, and posted
a few of the resulting audio clips on a website[7]. To test the prin-
ciples, the three systems were first simulated using double-precision
floating-point arithmetic; the ADCs and DACs were assumed to have
infinite precision, and Matlab functions were used to implement all
the g() and g−1() functions, even in the modified DSP, instead of
lookup tables. The output of the system in Fig. 1(c) sounded iden-
tical to that of the prototype in Fig. 1(a), as expected, whereas the
output of the system in Fig. 1(b) sounded grossly distorted.

To judge the technique’s performance on the audio clips for the
case of limited resolution, we ran the systems of Fig. 1(a) and Fig.
1(c) using 8-bit ADCs and DACs; the DSPs were implemented with
8-bit fixed-point arithmetic. Listening tests were performed with
speech and music inputs, and it was found empirically that for the
8-bit case, μ = 63 results in the (subjectively) optimal output qual-
ity. For both systems, quantization noise resulted in an audible “hiss”
in the output. However, whereas the hiss of the prototype’s output
was relatively constant, the hiss in the companding system’s output
became much less audible as the music got softer, and was often
completely inaudible during very soft music passages. These results
are similar to those in [3], even though the instantaneous compand-
ing technique proposed in this paper is much simpler to implement
than the syllabic companding technique in [3].

4. CONCLUSIONS AND DISCUSSION

In this paper, instantaneous companding has been extended to DSPs
through the application of nonlinear functions to the signals of a
DSP. It has been shown that combining input compression, output
expansion, and internal nonlinear modification of a DSP can be done

in a manner transparent to the original input-output behavior of the
DSP and its A/D interfaces. The resulting companding DSP is in-
ternally nonlinear; despite this, assuming no quantization, the input-
output behavior of the entire companding system, consisting of the
companding DSP, the input compressor, and the output expander,
remains identical to that of the original LTI system. In the pres-
ence of quantization, it was shown that the companding system has
large SNDR over a large input range, in contrast to the original non-
companded system, which suffers from significantly reduced SNDR
at low and moderate input levels. By significantly reducing the quan-
tization distortion at low and moderate input levels, the proposed
technique can reduce the number of bits required in achieving a given
minimum SNDR over a large input range, which is attractive for ap-
plications such as multimedia.

The proposed instantaneous companding technique has many
advantages over the syllabic companding technique in [3]. In the
proposed technique, the uncompressed signals may be obtained by
simply applying g−1() to the corresponding compressed signals, so
no copy of the prototype system is necessary. Additionally, no en-
velope detection is required and no control inputs are needed in the
DSP. Also, the input and output of the DSP, û(n) and ŷ(n), are both
compressed, so they will both be N -bit numbers, and thus only one
N -bit ADC and one N -bit DAC are required. Thus, the presented
instantaneous companding technique yields benefits similar to those
in [3], without requiring a copy of the prototype, envelope detection,
extra control inputs, or extra ADCs or DACs.

The main disadvantage of the proposed technique is the neces-
sity of lookup tables for implementing the nonlinear functions. For-
tunately, the maximum number of rows in each lookup table is 2N ,
which is relatively small, as the necessity of companding implies
small N . It may be possible to get good results with even smaller
lookup tables, either by accepting some additional quantization or
by using interpolation. Adjusting the lookup table size is likely to
be an effective way to trade off memory requirements, speed and
precision. If interpolation is used, the nonlinear functions are ac-
tually piecewise linear; the authors are currently looking into such
implementations, as well as hardware realizations.
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