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ABSTRACT

This paper presents the bene ts of iterated coef cient updates for
the adaptation of partitioned block frequency domain second-order
Volterra lters when applied to nonlinear acoustic echo cancellation.
In order to increase the convergence speed of an NLMS algorithm
with separate kernel normalization, each input frame is used for sev-
eral coef cient updates. This procedure effectively accelerates the
convergence of the employed adaptive Volterra lters and is shown
to be superior to processing with increased data overlap. The advan-
tages of this novel approach are illustrated by experimental results
for noise and speech input and guidelines for determining suitable
numbers of iterations for the lter kernels are given.

Index Terms— iterative methods, Volterra lters, echo suppres-
sion, adaptive signal processing

1. INTRODUCTION

The task of acoustic feedback suppression is vital to a variety of ap-
plications and appropriate algorithms are well-established. However,
if the acoustic echo path cannot be modelled by linear components
alone, nonlinear acoustic echo cancellation (NLAEC) becomes de-
sirable. The basic scenario of such an NLAEC is depicted in Fig. 1.

In [1] it has been shown that nonlinear distortions which origi-
nate in small-scale, low-cost loudspeakers driven at high volume can
be compensated adequately by Volterra lters (VF) of second order.
However, the convergence of such adaptive structures is signi cantly
slowed down by correlated input and insuf cient excitation of the
LMS-type coef cient updates. The latter is especially true for the
quadratic Volterra kernel which models the nonlinear components
of the echo signal that are highly dependent on the signal’s ampli-
tude and therefore usually excited only intermittently. Due to the
non-stationary nature of speech, the signal power varies strongly for
different segments of the signal and thus it seems desirable to fully
exploit the excitation power of the nonlinear distortions in order to
increase the speed of convergence.

This contribution proposes to employ an iterative update pro-
cedure as already applied for the case of linear ltering [2]. By
doing so, the same input frame of an overlap-save block process-
ing is repeatedly ltered in order to adjust the adaptive coef cients
signi cantly more than in the single-update case. At rst, an intro-
duction into the structure of partitioned block second-order Volterra
lters is presented in Section 2 and a concise overview of the con-

ventional frequency domain NLMS adaptation for these nonlinear
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lters is given in Section 3. The extension towards an iterated update
procedure is presented in Section 4 along with some considerations
concerning the computational efforts. Section 5 presents experimen-
tal results for noise and speech input.
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Fig. 1. NLAEC scenario where the nonlinear echo y(k) is to be
compensated by an adaptive second-order Volterra lter

2. PRELIMINARIES

As background for the iterated update approach, we brie y review
the ef cient frequency domain realization of adaptive second-order
VFs and the corresponding adaptation techniques. However, for a
thorough understanding of these partitioned block frequency domain
adaptive Volterra lters (PBFDAVF), the reader is referred to [1] for
a detailed presentation.

According to [1], the DFT domain output block �Yν(m) of the
PBFDAVF at time frame ν is given as superposition of all corre-
sponding linear and quadratic kernel partition outputs

�Yν(m) = �Yν,1(m) + �Yν,2(m)

=

B1−1�
b1=0

�Yν,b1(m) +

B2−1�
b21=0

B2−1�
b22=0

�Yν,b21,b22(m), (1)

where the partition size N and the number of lter partitions B1, B2

are chosen such that N1 = B1 N and N2 = B2 N holds for the
total memory lengths N1, N2 of the VF. Thereby, the output of the
partition b1 of the linear kernel reads

�Yν,b1(m) = �Hν,b1(m)Xν,b1(m), (2)

which corresponds to the well-known fast convolution by multipli-
cation of the 1D-DFT �Hν,b1(m) of the lter partition and the input
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DFT block Xν,b1(m). On the other hand, the quadratic kernel’s par-
tition outputs are speci ed by

�Yν,b21,b22(m) =
1

M

M−1�
�m=0

�Hν,b21,b22

� �m, [m− �m]M
�

Xν,b21 (�m) Xν,b22

�
[m− �m]M

�
,

(3)

where multi-dimensional ltering techniques are applied as derived
in [3] due to the 2D-DFTs �Hν,b21,b22

�
m21, m22

�
. Note that [...]M

denotes a modulo operation w.r.t. the DFT size M .
The input data of the overlap-save method is extracted for all

necessary blocks b and frame indices ν as

xν,b(κ) := x
�
ν L + κ− (M − L)− b N

�
(4)

where the time index 0 ≤ κ ≤ M − 1 results in an effective frame
shift by L samples. This shift is required to be smaller or equal to
N and may also be expressed by means of a so-called overlap factor
ρ := N

L
which speci es the amount of overlapping samples between

successive frames. The resulting time frames of the lter output are
nally obtained by

�yν(κ) = IDFTM

��Yν(m)
�

(5)

�y(ν L + l) = �yν

�
M − L + l

�
(6)

where 0 ≤ l ≤ L− 1 captures only the L most recent time instants
of the output frame �yν(κ). This results from the fact that the DFT
domain multiplications in (2) and (3) correspond to circular convo-
lutions in the time domain.

In order to express the PBFDAVF operation in a compact man-
ner, (1) is reformulated in vector notation which yields

�Yν(m) =
� �HT

ν,1(m), �HT
ν,2(m)

	 �
XT

ν,1(m),XT
ν,2(m)

	T

= �HT
ν(m)Xν(m), (7)

where the contributing bins of the lter partitions are described by

�Hν,1(m) :=
�
..., �Hν,b1(m), ...

	T
(8)

�Hν,2(m) :=
�
..., �Hν,b21,b22(�m,



m− �m�

M
), ...

	T
(9)

and relevant bins of the input spectra are captured as

Xν,1(m) :=
�
..., Xν,b1(m), ...

	T
(10)

Xν,2(m) :=
1

M

�
..., Xν,b21( �m)Xν,b22 (



m− �m�

M
), ...

	T
.

(11)

Note that the necessary division by M is incorporated into the de -
nition of Xν,2(m) for presentational convenience.

3. CONVENTIONAL NLMS ADAPTATION

As can be seen by the de nitions in (8) and (9), the Volterra ltering
of (7) is linear w.r.t. its kernel bins and therefore a frequency domain
adaptation of the VF can be performed by applying standard LMS
approaches [4]. At rst, we regard the samples of the ν-th residual
error frame �eν(κ) = �dν(κ)− �yν(κ) (12)

where the frames of the microphone reference are extracted analo-
gously to (4) as

�dν(κ) := d
�
ν L + κ− (M − L)

�
. (13)

Due to the temporal aliasing, which is contained in �yν(k) and is
caused by the overlap-save technique, the desired error frames eν(κ)
are furthermore constructed such that

eν(κ) :=

�
0 , 0 ≤ κ ≤ M −N − 1�eν(κ) , M −N ≤ κ ≤ M − 1

, (14)

and thus the rst samples are discarded. Correspondingly, the error
spectra of (6) are merely based on the N most recent time instants
of the lter output:

Eν(m) = DFTM

�
eν(κ)

�
. (15)

Note that in case of overlapped processing with ρ > 1, (14) provides
a robust estimation of the DFT domain error Eν(m), since it is al-
ways based on the last N samples of (12), although only the most
recent L < N time instants contain new information.

If an instantaneous estimate of the mean squared error (MSE)
gradient is employed [4], the general LMS update equation for both
kernels (p = 1, 2) of the PBFDAVF is given by

�Hν+1,p(m) = �Hν,p(m) + μν,p(m) C
�

Eν(m)X∗ν,p(m)
�

(16)

which affects all DFT domain coef cients which contribute to the
frequency bin m. Here, ∗ denotes conjugate complex and C{...}
represents a constraint function comprising the cascade of an IDFT,
a windowing operation and a subsequent DFT which ascertains the
constraint of zero-padded time domain lter partitions [1]. If the step
sizes are chosen such that

μν,1(m) ≡ μν,2(m) =
α

Sν(m) + δ
(17)

with 0 < α < 2 and a regularization constant δ to prevent numeri-
cal problems, (16) yields a jointly normalized update (JNLMS). This
is due to the fact that the Sν(m) represent the smoothed subband
powers of the input spectra of both Volterra kernels according to

Sν(m) = Sν,1(m) + Sν,2(m) (18)

which is furthermore composed of the individual powers

Sν,p(m) = λp Sν−1,p(m) + (1− λp)




Xν,p(m)





2
2

(19)

for p = 1, 2 and the forgetting factors λp chosen smaller than one.
Apparently, this JNLMS update is dominated by an adaptation

of the linear Volterra kernel as Sν,2(m)<<Sν,1(m). This is a con-
sequence of the DFT bin products and the division by M in (11)
and yields a rather slow convergence of the quadratic kernel due to
its weak excitation. On the other hand, this implies a noticeable
impact on the complete adaptation progress as well, since the rarely
compensated nonlinear components prevent the adaptive VF from
converging to the unknown nonlinear system. A remedy to this is
given by performing separately normalized updates (SNLMS), where
(16) is applied with a kernel-dependent step size

μν,p(m) =
αp

Sν,p(m) + δ
(20)

for the linear (p = 1) and the quadratic kernel (p = 2), respectively.
Nevertheless, since the misadjustment of the strongly excited lin-
ear kernel also acts as a distortion for the quadratic kernel, μν,2(m)
has to be selected small enough to ensure a stable adaptation. How-
ever, this results in the drawback of a relatively slow convergence
behaviour of the SNLMS as well and thus methods for accelerated
adaptation are desirable.
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4. ITERATED COEFFICIENT UPDATES

In the following, we will now apply an iterative update approach
as performed in [2] to an NLAEC scenario by means of a second-
order PBFDAVF. In order to exploit the excitation power within each
frame more ef ciently, the usual SNLMS is repeated another R − 1
times per frame which results in a total of R coef cient update iter-
ations in each kernel. The introduced extensions of this adaptation
employing a joint number of iterations (SNLMS-JI) will be discussed
in the following.

Due to repeated coef cient update in each frame ν, the general
update equation (16) is reformulated according to

�H(r+1)
ν,p (m) = �H(r)

ν,p(m) + μν,p(m)C
�

E(r)
ν (m)X∗ν,p(m)

�
,

(21)
which is valid for 0 ≤ r ≤ R − 1 up to a speci ed number R of
allowed iterations. To ascertain a continuous adaptation towards the
unknown nonlinear system, the initial and nal coef cient sets are
given by

�H(0)
ν,p(m) = �H(R)

ν−1,p(m) (22)

�H(0)
ν+1,p(m) = �H(R)

ν,p (m) (23)

for each frame ν respectively. As can be seen from (21), the same
input data Xν,p(m) is used for each of the iterations, so that the lter
output after the r-th iteration is given by:

�Y (r)
ν (m) =

� �H(r)
ν (m)

�T
Xν(m), (24)

�y(r)
ν (κ) = IDFTM

��Y (r)
ν (m)

�
. (25)

Accordingly, the residual error after the r-th coef cient update thus
reads �e(r)

ν (κ) = �dν(κ)− �y(r)
ν (κ). (26)

and is further reduced compared to the a-priori error �e(0)ν (κ) [2], be-
cause it is already based on the re ned echo estimate �y(r)

ν (κ). Con-
structing the desired frame e

(r)
ν (κ) analogously to (14), the corre-

sponding DFT spectrum of the intermediate block error of (26) is
calculated as

E(r)
ν (m) = DFTM

�
e(r)

ν (κ)
�

, (27)

and can then be used to obtain another coef cient update (21).
Repeating the above procedure for all R iterations in each frame

ν thus yields the a-posteriori error �e(R−1)
ν (κ). Consequently, the

MSE of this nal error block will be signi cantly lower than that of
�e(0)

ν (κ), due to the fact that the input data Xν(m) and �dν(κ) of the
current frame are exploited several times by the SNLMS-JI. On the
other hand, this implies that the second-order VF is not only adapted
towards the unknown nonlinear system, but that each �e(r)

ν (κ) is also
minimized w.r.t. the short-time signal characteristics to some extent.
However, this behaviour has also been reported in [2] for scenarios
of linear AEC and may be considered quite bene cial for real-world
applications within noisy environments as will be demonstrated by
the experimental results of Section 5.

Moreover, it has been shown in [5] that for the case of partitioned
block linear ltering, the employed iterated adaptation using sub-
band normalization and constrained coef cient updates has a poten-
tial risk of stability problems for certain data sets and R →∞. Nev-
ertheless, considering the small number of iterations (e.g. R ≤ 10)

for practical realizations of adaptive second-order VFs, these stabil-
ity issues may be neglected.

As can be seen from (21) to (27), the iterated coef cient up-
date has in principle about R times the complexity of a single-update
SNLMS algorithm. However, comparing the iterated adaptation pro-
cedure to an SNLMS update with ρ = R, we nd that the SNLMS-JI
is slightly less complex since for a reference length of N samples,
only a single DFT operation is suf cient to create the input spec-
tra of the Xν,p(m) whereas R transforms are required in case of a
processing with overlapping frames.

Regarding the large number of lter coef cients which contribute
to �Hν,2(m) in (9), the algorithmic complexity of the SNLMS-JI is
mainly determined by the quadratic kernel of the adaptive VF. Thus
it is desirable to perform a different number of update iterations Rp

for each of the Volterra kernels (p = 1, 2). By doing so, the num-
ber of coef cient update iterations of the SNLMS algorithm may be
adjusted to some optimum setting of R1, R2 in terms of complexity
and convergence speed.

The corresponding lter update equation of this separately iter-
ated (SNLMS-SI) algorithm then reads

�H(rp+1)
ν,p (m) = �H(rp)

ν,p (m) + μν,p(m)C
�

E
(rp)
ν (m)X∗ν,p(m)

�
,

(28)
where 0 ≤ rp ≤ Rp − 1 controls the kernel-dependent number of
iterations. Note that the transitions of the lter coef cient sets as in
(22), (23) are performed accordingly.

Taking the computational demands of the quadratic kernel lter-
ing into account, it is suitable to choose the number of iterations for
the linear kernel greater than those of the quadratic kernel, i.e. in
practice R1 ≥ R2 holds. Assuming such a setting of the iteration
parameters, we nd that the lter output for the common iterations
of both kernels with 0 ≤ r ≤ R2 − 1 is obtained as given by (24).
However, the PBFDAVF for any further iteration R2 ≤ r ≤ R1 − 1
reads

�Y (r)
ν (m) =

� �H(r)
ν,1(m)

�T
Xν,1(m) +

� �H(R2−1)
ν,2 (m)

�T
Xν,2(m),

(29)

since the adaptation of the quadratic kernel is stopped and only the
linear kernel is adjusted furthermore. Note that the kernel output
corresponding to the coef cient set �H(R2−1)

ν,2 (m) can ef ciently be
stored in memory and thus no quadratic ltering has to be performed
for the iterations exceeding R2 in frame ν.

5. EXPERIMENTAL RESULTS

We will now present simulation results for an NLAEC system as de-
picted in Fig. 1 applying the proposed iterated coef cient update for
stationary noise input (coloured, Laplacian) and male speech. There-
by, the echo path of y(k) has been modelled by a second-order VF
with N1 = 320 and N2 = 64, where a power ratio of linear to non-
linear components of 20 dB has been achieved. The echo canceller
is designed as a second-order PBFDAVF of the same lter kernel
lengths with a common partition size N = 64 (implying B1 = 5,
B2 = 1) accordingly.

All experiments have been conducted using step sizes α1 ≡
α2 = 0.3, forgetting factors λ1 = 0.94, λ2 = 0.72 and a regular-
ization constant δ = 0.001. Since no step size control is regarded,
d(k) is generated for single-talk situations (i.e. s(k) = 0) only, us-
ing some amount of additive white noise such that an SNR of 30 dB
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is obtained. Therefore, all presented curves display the total ERLE

ERLE(k) [dB] := 10 · log10

�
E�d2(k)

�
E�e2(k)

�
�

(30)

which is a common measure for the achieved echo cancellation.
Note that this evaluation is based on the real-world signals d(k) and
e(k) as they will be perceived by a far-end listener in noisy environ-
ments, i.e. when n(k) �= 0.

Fig. 2 shows the results of an NLAEC with the aforementioned
noise (top) and speech input (bottom). In both cases, we compare a
plain SNLMS adaptation with ρ = 1 to an SNLMS using ρ = 4 and
an SNLMS-JI algorithm which has no overlapping data, but employs
R = 4 iterations per frame. As can be noticed, the iterated coef -
cient updates clearly outperform the SNLMS algorithm in terms of
convergence speed and steady-state echo cancellation. Furthermore,
the achieved gain is even above the SNR threshold of 30 dB, which
is due to the inherent exploitation of the short-time characteristics of
the noise n(k) which is also contained in d(k) [2].
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Fig. 2. ERLE results for noise (top) and speech input (bottom) of a
second-order PBFDAVF using SNLMS and SNLMS-JI adaptation

In order to investigate the SNLMS-SI with a kernel-dependent
number of iterations, Fig. 3 illustrates the corresponding ERLE re-
sults for speech input, where ρ = 1 has been set for all evaluated
algorithms. Interestingly, it indicates that an iterated adaptation with
R1 = 4 and R2 = 2 is comparable to an algorithmic version which
performs update iterations only for the quadratic kernel, but with a
higher complexity (R2 = 4). On the other hand, comparing these
results with Fig. 2, we nd that the achieved ERLE gain approaches
the results of the SNLMS-JI algorithm with a joint number of R = 4
iterations for both Volterra kernels and is noticeably higher than for
the single-update adaptation.

By this, we conclude that in case of an SNLMS-SI algorithm,
controls for a consistent adaptation of both Volterra kernels are bene-
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Fig. 3. ERLE results for speech input comparing SNLMS and
SNLMS-SI adaptation of the PBFDAVF

cial in order to avoid large cross-kernel distortions which might
inhibit proper convergence. However, this result indicates that the
computational demands of the iterated SNLMS may be reduced sig-
ni cantly by using a separate number of iterations for each kernel
and lowering R2 for the adaptation of the quadratic Volterra kernel.
Moreover, if the complexity of these iterated updates is to be reduced
further, fast realizations of this technique have to be taken into ac-
count, as also available for the partitioned block adaptive ltering
within linear AEC scenarios [2].

6. CONCLUSIONS

We have proposed an iterated version of the partitioned block adap-
tive Volterra lter in the DFT domain. By repeating the coef cient
update several times for a given data frame, the excitation of the lter
kernels is considerably increased and thus higher adaptation speeds
are obtained. Furthermore, we have shown that even higher steady-
state echo attenuation can be observed for both noise and speech in-
puts since the lter adaptation is accompanied with an optimization
towards the short-time signal characteristics in each frame. Although
the complexity of this algorithm is roughly proportional to the num-
ber of applied iterations, the computational demands are still below
a comparable approach with increased frame overlap. Moreover, the
number of calculations can be further reduced by selecting a dif-
ferent number of update iterations for the linear and the quadratic
Volterra kernel, respectively.
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