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ABSTRACT

In this paper a nonlinear adaptive algorithm based on a ker-
nel space least mean squares (LMS) approach is presented.
With most of the neural network based methods for time se-
ries modeling it is dif cult to implement a sample-by-sample
adaptation method. This puts a serious limitation on the ap-
plicability of adaptive nonlinear lters in many optimal signal
processing and communication applications where data ar-
rives sequentially. This paper shows that the Kernel LMS al-
gorithm provides a computational simple and an effective al-
gorithm to train nonlinear systems for system modeling with-
out the need for regularization, without convergence to local
minima and without the need for a separate bock of data as a
training set.

Index Terms— LMS, kernel trick, stochastic gradient

1. INTRODUCTION

The least mean squares (LMS) lter is widely used in all ar-
eas of adaptive learning from system identi cation to channel
equalization. The popularity of this algorithm since its intro-
duction by Widrow and Hoff [1] in the 1960s has grown im-
mensely because of its simplicity and effectiveness. The idea
is an intelligent simpli cation of the gradient decent method
for learning [2] by using the local estimate of the mean square
error. In other words, the LMS algorithm is said to employ a
stochastic gradient instead of the deterministic gradient used
in the method of steepest decent. By design, it avoids the esti-
mation of correlation functions and matrix inversions. Unfor-
tunately these characteristic do not extend to nonlinear adap-
tive lters. Nonlinear system adaptation based on local gra-
dients require separate blocks of data, called the training set,
to be made available before operation. Of course, the LMS
algorithm can still be easily used to adapt the linear output
layer of nonlinear models as the radial basis function (RBF)
network. However, the centers of the basis are selected by the
training data (either by centering each Gaussian on a sample
or through clustering [3]), so a block of data is still necessary.
For multilayer perceptrons (MLPs) the LMS stochastic gradi-
ent has to be heavily modi ed to take into consideration the
nonlinearities (the backpropagation algorithm [3]). In MLPs
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the need for a training set is not fundamental, i.e. backprop-
agation can be applied one sample at a time, but since all the
parameters of the system change with each sample, the per-
formance is so poor early on and the convergence so slow
that a training set is practically required. Moreover, the per-
formance surface is most often nonconvex with many local
minima, which further complicates training.
Kernel methods have also been proposed to produce non-

linear algorithms from linear ones expressed with inner prod-
ucts by employing the famed kernel trick [4]. More recently,
there has been an interest in the machine learning community
to train kernel regressors or classi ers one sample at a time to
counteract the size of the huge datasets of some real world ap-
plications. Important theoretical results have proved the con-
vergence of on-line learning algorithms with regularization in
reproducing kernel Hilbert spaces [5], and a simple stochastic
gradient based algorithm for adaptation has been developed
[6]. In [7], a similar formulation is presented, but weighting
coef cients are adapted in the input space. In this paper, we
shall derive an LMS algorithm directly in kernel feature space
and employ the kernel trick to obtain the solution in the input
space. Moreover, the impressive results demonstrate that ex-
plicit regularization as used in [5, 6] may be redundant.
The next section provides a short introduction to kernel

methods and the LMS algorithm. Sections 3 and 4 present the
kernel LMS algorithm and some experimental results respec-
tively. Finally, section 5 summarizes the main conclusions
and points out some lines for further research.

2. BACKGROUND
2.1. Kernel methods

In the past years a number of kernel methods, including Sup-
port Vector Machines (SVM) [4], kernel principal compo-
nent analysis (K-PCA) [8], and kernel independent compo-
nent analysis (K-ICA) [9] have been proposed and applied to
machine learning and signal processing problems. The ba-
sic idea of kernel algorithms is to transform the data xi from
the input space to a high dimensional feature space of vec-
tors Φ(xi), where the inner products can be computed using
a positive de nite kernel function satisfying Mercer’s condi-
tions [4]: κ(xi,xj) = 〈Φ(xi), Φ(xj)〉. This simple idea al-
lows us to obtain nonlinear versions of any linear algorithm
expressed in terms of inner products, without even knowing
the exact mapping Φ. A particularly interesting characteristic
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Fig. 1. the linear lter structure with feature vectors in the
feature space.

of the feature space is that it is a reproducing kernel Hilbert
space (RKHS): i.e., the span of functions {κ(·,x) : x ∈ X}
de nes a unique functional Hilbert space [10], [11]. The cru-
cial property of these spaces is the reproducing property of
the kernel

f(x) = 〈κ(·,x), f〉 , ∀f ∈ F .

In particular, a nonlinear mapping from the input space to an
RKHS can be de ned as Φ(x) = κ(·,x) such that

〈Φ(x), Φ(y)〉 = 〈κ(·,x), κ(·,y)〉 = κ(x,y),

and thus Φ(x) = κ(·,x) de nes the Hilbert space associated
with the kernel, and can be thought as a nonlinear transfor-
mation from the input to feature space. Without loss of gen-
erality, in this paper we will only consider the translation-
invariant radial basis (Gaussian) kernel, which is the most
widely used Mercer kernel.

κ(x,y) = exp−
(
‖x− y‖2

2σ2

)
(1)

2.2. Least mean squares (LMS) algorithm

The LMS algorithm, introduced in 1960 by Widrow, is a very
simple and elegant method of training a linear adaptive sys-
tem to minimize mean square error. Given a quadratic cost
function Jw(n) (where w is the tap-weight vector and n is
the time index), it can be shown that with exact measure-
ments of the gradient vector ∇Jw(n) and a suitable chosen
step-size parameter η, the weight vector updated by using the
steepest-descent algorithm converges in the mean to the opti-
mum Wiener solution. The LMS algorithm, instead of using
the exact gradient to update the weight vector, uses the instan-
taneous estimate given by ∇Ĵw(n) = −2e(n)u(n) resulting
in the following stochastic gradient descent update rule.

w(n + 1) = w(n) + 2ηe(n)u(n). (2)

The detailed analysis including that of convergence and mis-
adjustment is given in [12] and will not be the focus of this
paper.

3. KERNEL LMS

In this section we present the kernel LMS algorithm. The ba-
sic idea is to perform the linear LMS algorithm given by (2)

in the kernel feature space. For this let us assume thatΦmaps
the point u(n) in input space toΦ (u(n)) in the kernel feature
space with 〈Φ (u(n)) , Φ (u(m))〉 = κ (u(n),u(m)), where
〈·, ·〉 represents the inner product in the kernel Hilbert space.
This transformation to feature space for the most widely used
kernels is nonlinear, and depending on the choice of the kernel
this space can be in nite dimensional. The Gaussian kernel
that we use here will correspond to an in nite dimensional
Hilbert space. Since this feature space is linear, Φ (u(n))
can be considered an in nite dimensional column vector with
usual vector inner products. Let Ω be the weight vector in
this space such that the output is y(n) = 〈Ω(n), Φ (u(n))〉.
Ω(n) is Ω at time n. Let d(n) be the desired response. Figure
1 shows the nonlinear ltering scheme with the input vector
u(n) being transformed to the in nite feature vectorΦ (u(n)),
whose components are then linearly combined by the in nite
dimensional weight vector. Note that there is only one layer
of weights in this nonlinear lter, but since the size of feature
space is potentially in nite it is a universal approximator [13].
Now, due to the linear structure of the RKHS cost function
JΩ(n) = E[(d(n)− y(n))2] can be minimized with respect
to Ω. This can be done in the same way as done in (2) using
the stochastic instantaneous estimate of the gradient vector,
which yields

Ω(n + 1) = Ω(n) + 2ηe(n)Φ (u(n)) . (3)

Like before, η is the step-size parameter that controls the con-
vergence, speed, and misadjustment of the adaptation algo-
rithm [13, 12]. The only catch here is that Ω in (3) is in the
in nite dimensional feature space and it would be practically
impossible to update forΩ directly. Instead we shall use (3) to
relate each Ω(n) to its initialization Ω(0). This would easily
give

Ω(n) = Ω(0) + 2η
n−1∑
i=0

e(i)Φ (u(i)). (4)

For convenience we shall chooseΩ(0) to be zero (hence e(0) =
d(0)). The nal expression for Ω(n) becomes

Ω(n) = 2η
n−1∑
i=0

e(i)Φ (u(i)). (5)

It is here we shall exploit the kernel trick. Given Ω(n) from
(5) and the input Φ (u(n)) the output at n is given by

y(n) = 〈Ω(n), Φ (u(n))〉 = η
n−1∑
i=0

e(i) 〈Φ (u(i)) , Φ (u(n))〉

= η
n−1∑
i=0

e(i)κ (u(i),u(n)).

(6)
We call (6) the Kernel LMS algorithm. It is clear that, given
the kernel, Kernel LMS has a unique solution because it is
solving a quadratic problem in feature space. Notice also that
the weights of the nonlinear lter are never explicitly used in
the Kernel LMS algorithm, so the order of the lter is not user
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Fig. 2. The error samples for KLMS in predicting Mackey-
Glass time series.

Fig. 3. The learning curves for the LMS, the KLMS and the
regularized solution [6].

controllable. More importantly, since the present output is de-
termined solely by previous inputs and all the previous errors,
it can be readily computed in the input space! These error
samples are similar to innovation terms in sequential state es-
timation [13], as they add new information to improve the out-
put estimate. Each new input sample results in an output and
hence a corresponding error, which is never modi ed further
and it is incorporated in the estimate of the next output. This
recursive computation makes Kernel LMS especially useful
for on-line nonlinear signal processing, but the complexity
of the algorithm increases linearly as new error samples are
used. The error samples obtained for the Mackey-Glass time
series (used in our experiments) are shown in gure 2, and
they show a surprisingly fast convergence. The initial errors
in the adaptation tend to prevent the algorithm from over t-
ting the data. The initial errors are the most dominant since
the errors decay quickly and seem to have a prominent role in
the estimates of the output. We believe this nonparametric im-
provement in the output samples is a reason for not requiring
any kind of explicit regularization. In practice, if the errors
are satisfactorily small after p input samples, then the upper
index in the summation in (6) can be xed and the computa-
tion complexity for each successive output will beO(p). This
is, of course, larger than that for the linear LMS algorithm,
but still is smaller than most nonlinear algorithms. The kernel
size (the variance parameter in the radial basis function) is a
free parameter which affects the overall performance of the
algorithm like in any kernel based algorithm and can be cho-
sen through a quick cross validation step. The Silverman’s
rule [14] of thumb is another alternative. For our simulations
the kernel size chosen by the variance of the data works rea-

Fig. 4. Comparison of the mean square error for the three
methods with varying embedding dimension ( lter order for
LMS) of the input.

sonable well. Here, just like for the linear LMS algorithm, the
stepsize controls the convergence, speed, and misadjustment
of Kernel LMS. Through linear adaptive lter theory it can
be expected that for convergence, η is upper bounded by the
largest eigenvalue of the data covariance (in the feature space)
which is dif cult to estimate and dependent upon the kernel
size.

4. EXPERIMENTS AND RESULTS

To demonstrate the performance of the proposed method we
will present some simulation results. The mean square error
will be used to compare the performance of the Kernel LMS
algorithm (KLMS) and that of the linear LMS algorithm for
the one step prediction of the Mackey-Glass (MG30) time se-
ries. The simulations implement equation (6) for the KLMS
and the equation (2) for the linear LMS. The kernel size and
the step size were determined for best results after scanning
the parameters. The data was normalized to unity variance
before hand. The kernel size, σ2 was chosen to be 1 for these
experiments. It was also observed that the performance was
not very sensitive to the kernel sizes between 1 and 4. The
values of the step size for the LMS and the KLMS algorithms
were chosen as 0.01 and 0.5 respectively.
The plots presented include the learning curve and com-

parisons of MSE values for different embedding dimensions.
To plot the learning curve after each update the learning was
frozen and a new batch of 300 data samples was used to es-
timate the mean square error. Figure 3 shows the learning
curve for both algorithms (the step size values were chosen
for fastest convergence). Surprisingly, the speeds of conver-
gence of both methods (LMS and KLMS) are comparable (i.e.
the two learning curves are basically parallel to each other)
even though the KLMS is working in an in nite dimensional
Hilbert space, where theoretically the eigenvalue spread is un-
constrained and statistical reasoning requires regularization
to be performed [15]. This can be attributed to the fact that
the scattering of the data, although existing in an in nite di-
mensional space in theory, is such that far lesser canonical
directions are dominant (the corresponding covariance matrix
has a few eigenvalues that are dominant, while the others are
zero for practical purposes). Since the LMS only searches the
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space of signi cant eigenvalues anyway, it tends to concen-
trate on the signal subspace and suggests that explicit regu-
larization is not required. Figure 3 also includes the regular-
ized case [6] where results were only satisfactory when the
regularization parameter was close to zero. Here we used a
regularization parameter of 0.7 and stepsize of 0.08. These
parameters were chosen after a set of trials to obtain the best
MSE after convergence. A systematic way of choosing the
regularization parameter for this kind of stochastic learning is
still lacking.
The KLMS lter achieves the best result for the embed-

ding dimension of 6 ( gure 4), which is the optimal value
for the MG time series according to Takens embedding theo-
rem [16]. For the plots, the LMS and the KLMS algorithms
were both trained (on-line) for 200 data samples and were
tested using a testing set of 300 new data points. As a refer-
ence we have also included the results using an RBF network
(trained with the least squares method) with 200 RBFs cen-
tered at the samples, and 300 new samples used for testing.
The results obtained with KLMS is surprisingly close to that
of the RBF network considering the 200 ”weights” are used
so differently: in the RBF all the 200 weights are optimized
for the data set, while in the KLMS the errors are computed
and xed for the subsequent samples (i.e. the KLMS is ba-
sically nonparametrically trained). Therefore, the on-line use
of the data results in a very small degradation of performance.
Notice also that training the KLMS was much simpler with
no need of matrix computation and inversion, which makes it
very practical for real world nonlinear ltering applications.

5. CONCLUSION

This paper derived directly Widrow’s least mean squares al-
gorithm in an in nite dimensional kernel Hilbert space. The
algorithm uses the kernel trick to obtain the nal output, ef-
fectively resulting in the adaptation of a nonlinear lter with-
out the complexities of backpropagation and utilizing the data
pretty much as the conventional linear lter trained with LMS.
Although stochastic learning is known in the machine learn-
ing community using regularization, here we found out that
for time series modeling the regularization is not necessary to
obtain a practical algorithm and a very good solution. Since
the LMS tends to search the signal manifold because it stalls
in the directions where data has small variance, the problem
is solved effectively in a much smaller space spanned by the
dominant eigen-directions and does not require external reg-
ularization.
The kernel LMS algorithm basically solves the least squares

problem (in the feature space) implying that the gradient search
is on a smooth quadratic performance surface, resulting in re-
liable convergence without the hassles of local minima. An-
other interesting fact when the Gaussian kernel is utilized, is
that the transformed data lies on the surface of a sphere, i.e.
the transformed data is automatically normalized, which has
a great advantage for the LMS algorithm. Indeed, this LMS
becomes automatically normalized LMS.
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