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ABSTRACT

A new method of applying the unscented transformation to con-
ditionally linear transformations of Gaussian random variables is
proposed. This method exploits the structure of the model to re-
duce the required number of sigma points. A common application
of the unscented transformation is to nonlinear ltering where it
used to approximate the moments required in the Kalman lter re-
cursion. The proposed procedure is applied to a nonlinear ltering
problem which involves tracking a falling object.
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1. INTRODUCTION

The unscented transformation (UT) is a method for approximat-
ing, in a computationally ef cient manner, the moments of a ran-
dom variable which has undergone a nonlinear transformation [7].
This is done by selecting a number of sigma points, passing them
through the transformation and collecting the sample statistics of
the transformed sigma points. The idea is similar to importance
sampling except the UT selects samples deterministically rather
than randomly.

The UT nds a useful application in nonlinear ltering as a
means of approximating the Kalman lter (KF). Although the KF
is the minimummean square error estimator only for linear/Gaussian
dynamic systems, it’s use for nonlinear systems is desirable be-
cause it is computationally ef cient and usually performs well [8].
In general the moments required in the KF recursion cannot be
computed exactly. A popular method of approximating these mo-
ments is to linearise about a certain point and then use the usual
KF recursion. This is known as the extended KF (EKF) [4]. The
EKF performs adequately in many situations but has a tendency
to underestimate the estimator covariance matrix. This can lead
to divergence. The UKF, which uses UT moment approximations,
generally avoids this problem [8]. Additional advantages of the
UKF over the EKF are that it is easier to apply as it does not re-
quire derivation of the Jacobian of the transformation, and it can
be more widely applied, e.g., to discontinuous transformations.

A basic requirement of the sigma points used in the UT is that
the sample mean and covariance matrix of the sigma points should
equal the mean and covariance matrix of the variable being trans-
formed [7]. There are various ways this can be done. The basic
implementation of the UT uses 2n+1 sigma points for transforma-
tion of a n-dimensional random variable and includes a parameter
for controlling the spread of the sigma points [7]. The scaled UT
offers increased control of the sigma point distribution through the
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inclusion of additional parameters [5]. A method using n+2 sigma
points, referred to as the simplex sigma points, has also been pro-
posed in [6]. Alternatively, improved accuracy can be obtained
through the use of an increased number of sigma points. This
was shown in [13] for transformations of scalar variables. An-
other approach is to use numerical integration rules which are ex-
act for monomials up to a certain order [9]. For instance, the basic
scheme, using 2n + 1 points, is exact for monomials up to degree
three. A scheme which is exact for monomials up to degree ve
requires 2n2 + 1 points.

A common element of the various methods of sigma point se-
lection described above is that the number of sigma points is de-
termined by the dimension of the random variable undergoing the
transformation. In [10] it was shown that this requirement can be
relaxed if the transformation is linear in some elements of the ar-
gument and nonlinear in others. For these partially linear transfor-
mations, the joint moments required in the KF can be accurately
approximated using a number of sigma points depending on the
number of elements which are nonlinearly transformed. A de -
ciency of the procedure proposed in [10] is that it does not apply
to the important class of conditionally linear transformations, i.e.,
transformations which, with some of the elements of the argument
held constant, are linear in the remaining elements [12]. This is
a more general class of transformations which includes the par-
tially linear transformations as a special case. Several applications
which t this class of models are given in [12]. In this paper a
new method of performing a reduced point UT which is applicable
when a conditionally linear, or more accurately af ne, transforma-
tion is applied to a Gaussian random variable is proposed. The
procedure has parallels with the process of Rao-Blackwellization
in particle ltering [11] and applies to the same models. This link
will be discussed in more detail in the body of the paper.

The paper is organised as follows. The UT is reviewed in Sec-
tion 2. The proposed UT for conditionally linear transformations is
described in Section 3 and applied to a ltering problem in Section
4. Conclusions are drawn in Section 5.

2. THE UNSCENTED TRANSFORMATION

Consider a random variable x ∈ R
n subject to a nonlinear trans-

formation g : R
n → R

m. Letting y = g(x), it is desired to
nd the moments μY

�
= E(y), ΣY

�
= cov(y, y) and ΣXY

�
=

cov(x, y). These are the moments which are required if the UT is
used as part of the KF.

The expectation of y can be expanded as

μY =

Z
E(y|x)p(x) dx =

Z
g(x)p(x) dx. (1)
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The notation p will be used to denote probability density func-
tions (pdfs). The particular pdf under consideration will be clear
from the arguments. In many cases of practical interest the in-
tegral (1) cannot be computed exactly so an approximation is re-
quired. The UT performs this approximation as follows. A col-
lection of s sigma points X i, i = 1, . . . , s are selected and given
a weighting with the weight for the ith sigma point denoted as
wi, i = 1, . . . , s. The sigma points and weights are such that
the sample mean and covariance matrix are equal to the mean and
covariance matrix of x. The sigma points are passed through the
transformation g to obtain Yi = g(X i), i = 1, . . . , s. The desired
expectation (1) is then approximated by the sample mean

μ̂Y =
sX

i=1

wiYi. (2)

The remaining moments involve the evaluation of similarly in-
tractable integrals. They can be approximated as

Σ̂Y =

sX
i=1

wi
“
Yi − μ̂Y

” “
Yi − μ̂Y

”′
, (3)

Σ̂XY =
sX

i=1

wi
“
X i − μX

” “
Yi − μ̂Y

”′
, (4)

where ′ denotes the matrix transpose. As discussed in the Intro-
duction, there are several ways of choosing the sigma points and
weights [8].

3. THE UNSCENTED TRANSFORMATION FOR
CONDITIONALLY LINEAR TRANSFORMATIONS

The transformation g : R
n → R

m is applied to the random vari-
able x ∈ R

n with the following assumptions:
A1 x is Gaussian with mean μX and covariance matrixΣX .
A2 The random variable x partitions as (a′, b′)′ such that the

transformation g can be written as:

g(x) = d(a) + G(a)b. (5)

While assumption A1 may appear restrictive it is not unreasonable
when the KF is applied to nonlinear ltering problems. In such
cases it is customary to employ the maximum entropy principle
and take the posterior density to be Gaussian [3]. Assumption A2
states that conditional on a the transformation g is linear (af ne)
in b. In this section the structure implied by these assumptions
will be exploited to reduce the number of sigma points required to
approximate the joint moments of y = g(x) and x.

The expectation of y = g(x) can be expanded as

μY =

Z
E (y|a, b)p(b|a)p(a) db da. (6)

The mean and covariance matrix of x are partitioned as

μX =

»
E(a)
E(b)

–
=

»
μA

μB

–
, (7)

ΣX =

»
cov(a, a) cov(a, b)
cov(b, a) cov(b, b)

–
=

»
ΣA ΣAB

Σ′AB ΣB

–
. (8)

Then, assumption A1 and the matrix inversion lemma yield [1]

νB(a)
�
= E(b|a) = μB +Σ′ABΣ

−1
A (a− μA), (9)

Γ
�
= cov(b|a) = ΣB −Σ′ABΣ

−1
A ΣAB . (10)

Substitution of (5) into (6) combined with (9) gives

μY =

Z
νY (a)p(a) da. (11)

where νY (a)
�
= E(y|a) = d(a) + G(a)νB(a). Note that (11)

has the same form as (1) with the difference that A1 and A2 have
been exploited to reduce the dimension of the numerical prob-
lem. The UT approximation to (11) proceeds by selecting s sigma
points A1, . . . ,As along with weights w1, . . . , ws. These sigma
points can be found using any of the methods discussed previously.
The transformed sigma points are calculated as

Yi = νY (Ai), i = 1, . . . , s, (12)

and substituted in (2) to approximate the expectation μY . Note
that, for a given sigma point selection scheme, the number s of
sigma points required to approximate μY via (11) will be smaller
than that required by direct approximation via (1) due to the re-
duced dimension of the integration variable.

The covariance matrixΣY of y can be expanded as

ΣY =

Z
(y − μY ) (y − μY )′ p(y) dy

=

Z
(y − μY ) (y − μY )′ p(y|x)p(x) dy dx

=

Z
[d(a) + G(a)b − μY ] [d(a) + G(a)b − μY ]′

× p(b, a) db da

=

Z ˘
[νY (a)− μY ] [νY (a)− μY ]′ + G(a)ΓG(a)′

¯
× p(a) da. (13)

The UT approximation to (13) can then be calculated using the
sigma pointsA1, . . . ,As and the transformed sigma points of (12):

Σ̂Y =

sX
i=1

wi
˘
(Yi−μ̂Y )(Yi−μ̂Y )′+G(Ai)ΓG(Ai)′

¯
. (14)

The cross-covariance matrix ΣXY between x and y can be ex-
panded as

ΣXY =

Z
(x − μX)(y − μY )′p(x, y) dy dx

=

Z „»
a
b

–
− μX

«
[d(a) + G(a)b − μY ]′

× p(b, a) db da

=

Z j „»
a

νB(a)

–
− μX

«
[νY (a)− μY ]′

+

»
0

ΓG(a)′

– ff
p(a) da. (15)

Let X i = [Ai′, νB(Ai)′]′ for i = 1, . . . , s. Then the cross-
covariance matrix ΣXY between x and y can be approximated
as

Σ̂XY =
sX

i=1

wi

» “
X i − μX

” “
Yi − μ̂Y

”′
+

»
0

ΓG(Ai)′

– –
.

(16)
This completes the derivation of the UT moment approximations
for a conditionally linear transformation of a Gaussian random
variable. The procedure for computing the moment approxima-
tions is summarised in Table 1.
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Table 1: UT moment approximation for a conditionally linear
transformation.

1. Select sigma points A1, . . . ,As and weights w1, . . . , ws.
2. Compute νB(A1), . . . , νB(As) and Γ using (9) and (10).
3. Compute the transformed sigma points Y1, . . . ,Ys using
(12).

4. Approximate μY , ΣY and ΣXY using (2), (14) and (16),
respectively.

4. APPLICATION TO NONLINEAR FILTERING

Consider a stochastic dynamic system with a state at time tk, k =
0, 1, . . . denoted as xk ∈ R

nx . The state evolves according to

xk = fk(xk−1) + vk, k = 1, 2, . . . , (17)

where the process noise vk is zero-mean and cov(vk, vk) = Qkδk−l.
The state at time t0 has initial distribtuion π0. The state is observed
through the measurement equation

yk = hk(xk) + wk, k = 1, 2, . . . , (18)

where the measurement noise wk is zero-mean, cov(wk, wl) =
Rkδk−l and cov(wk, vl) = 0. The goal of the ltering problem
is to estimate the state xk given the observations y1, . . . , yk for
k = 1, 2, . . .. The Kalman lter (KF) is a well-known solution
which is optimal in the minimum mean square error sense when
fk and hk are linear and the process and measurement noises are
Gaussian. More generally, for a nonlinear/non-Gaussian stochas-
tic dynamic system the KF provides a computationally ef cient
estimator which is quite accurate in many cases.

The KF represents the state estimate at time k − 1 by a mean
xk−1|k−1 and covariance matrix P k−1|k−1 which, for general
nonlinear/non-Gaussian models, can be interpreted as approxima-
tions of the true posterior mean and covariance matrix. The rst
step in the KF recursion is to compute the predicted mean and co-
variance matrix,

x̂k|k−1 = E(xk|y1:k−1), (19)
P k|k−1 = cov(xk, xk|y1:k−1). (20)

The predicted mean and covariance matrix are then corrected using
the current measurement to give

x̂k|k = x̂k|k−1 +ΨkS−1
k (yk − ŷk|k−1), (21)

P k|k = P k|k−1 −ΨkS−1
k Ψ′k, (22)

where

ŷk|k−1 = E(yk|y1:k−1), (23)

Sk = cov(yk, yk|y1:k−1), (24)
Ψk = cov(xk, yk|y1:k−1). (25)

In accordance with the maximum entropy principle, all expecta-
tions are taken with respect to Gaussian distributions.

The conditional expectations (19), (20) and (23)-(25) cannot
in general be computed exactly. The unscented KF (UKF) approx-
imates each of these moments using the UT. If the functions f k

and hk have the structure given in (5) then the procedure of Table
1 can be used to reduce the required number of sigma points. This
procedure has the same aim as Rao-Blackwellisation in particle
ltering, i.e., to reduce the required amount of numerical approxi-
mation by evaluating integrals analytically wherever possible. The
lter which results from applying the transformation of Table 1 to
the KF recursion will thus be referred to as the Rao-Blackwellised
UKF (RB-UKF). However, a complete correspondence between
the RB-UKF and RB particle lters is not possible because the
UKF and the particle lter are fundamentally different approaches
to the nonlinear ltering problem. The UKF seeks to approximate
the KF recursion and uses samples generated by the UT to ap-
proximate the required moments. On the other hand, the samples
generated in a particle lter are intended to be propagated through
time as an approximation to the posterior density. Thus although
both lters compute the conditional moments (9) for each sample
point, these conditional moments are used in different ways.

4.1. Filtering example

The RB-UKF will be demonstrated for the problem of tracking a
vertically falling body, previously considered in [2, 7]. The quanti-
ties to be estimated are the height, velocity and ballistic coef cient
of the body. The state vector is xk = [xk, ẋk, αk]′ where xk is the
height of the object, ẋk is the downward speed and αk is a ballis-
tic coef cient. The evolution of this state vector cannot be written
in the form (17) because the differential equation which governs
the motion of the body cannot be discretised exactly. However by
splitting the sampling period into short intervals and using a rst-
order approximation across each interval the evolution of the state
can be accurately approximated. Let x(t) denote the state at time
t so that x(tk) = xk and let Tk = tk − tk−1 denote the sampling
period. The interval [tk−1, tk] is split into M ≥ 1 sub-intervals.
Then, for t = tk−1, tk−1 + Tk/M, . . . , tk − Tk/M ,

x(t + Tk/M) = f (x(t)) + v(t) (26)

where cov(v(t), v(τ )) = Qδt−τ and

f (x(t)) =

2
4 x(t)− Tkẋ(t)/M

ẋ(t)− Tke−γx(t)ẋ(t)2α(t)/M
α(t)

3
5 . (27)

The constant γ = 5× 10−5 relates air density to altitude.
A sensor located at a height h above the ground and a hori-

zontal distance l from the vertically falling body provides noisy
measurements of the range of the body. Thus, (18) applies with

hk(xk) =
p

l2 + (xk − h)2. (28)

The dynamic and measurement equations are conditionally
linear for this example. Consider rst the dynamic equation (27).
For the transition between t and t + Tk/M , this is equivalent to
(5) with a = [x(t), ẋ(t)]′, b = α(t) and

d(a) =
ˆ

x(t)− Tkẋ(t)/M ẋ(t) 0
˜′

, (29)

G(a) =
ˆ

0 Tke−γx(t)ẋ(t)2/M 1
˜′

. (30)

Thus the procedure of Table 1 can be used to nd the moments (19)
and (20) at each time t = tk−1 + Tk/M, . . . , tk−1 + Tk = tk. If
the basic sigma point selection scheme of [7] is used, ve sigma
points are required rather than the seven which would be required
using (2)-(4).

The measurement equation is equivalent to (5) with a = xk,
b = [ẋk, αk]′, d(a) =

p
l2 + (xk − h)2 and G(a) = [0, 0].
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With the basic sigma point selection scheme of [7], the moments
(23)-(25) can be approximated using three sigma points rather than
the seven which would be needed using (2)-(4).

The parameters used here are the same as those used in [7].
The height of the sensor is h = 100 000ft and its horizontal dis-
tance from the object is l = 100 000ft. The measurement noise is
Gaussian with variance 104ft2. The sampling period is Tk = 1s
for all k. The object parameters at time t0 are x0 = 300 000ft,
ẋ0 = 20 000fts−1 and α0 = 10−3ft−1. The initial state is Gaus-
sian with mean [300 000, 20 000, 3× 10−5]′ and covariance ma-
trix diag(106, 4 × 106, 10−4). The initial estimates of the height
and velocity are correct but there is a large error in the initial es-
timate of the ballistic coef cient. No process noise is used in the
dynamic equation. Results presented in [7] show that the EKF
performs poorly in this scenario so it will not be considered here.

The RB-UKF and the conventional UKF are applied to the
tracking problem with the target dynamics evaluated using M =
32 sub-intervals per sampling period. The sigma points for both
methods are selected using the basic sigma point selection scheme
of [7]. The number of sigma points then required for each lter
has been discussed above. Figures 1 and 2 show the RMS errors in
height and the ballistic coef cent plotted against time. The errors
were obtained by averaging over 100 realisations. The two l-
ters perform similarly with the RB-UKF performing better at the
start of the observation interval and worse towards the end. The
most signi cant difference occurs in the estimation of the ballistic
coef cient at the beginning of the observation interval. Here the
RB-UKF provides signi cantly more accurate estimates.
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Figure 1: RMS error in height plotted against time for the RB-UKF
(solid) and the UKF (dashed).

0 10 20 30 40 50
10 6

10 5

10 4

10 3

10 2

Time

R
M

S
 e

rr
or

 in
 b

al
lis

tic
 c

oe
ffi

ci
en

t

Figure 2: RMS error in ballistic coef cient plotted against time for
the RB-UKF (solid) and the UKF (dashed).

5. CONCLUSIONS

A new unscented transformation for conditionally linear functions
of Gaussian random variables was proposed. For such functions,
the proposed method permits a reduction in the required number
of sigma points compared to the conventional approach. The aim
of the proposed method is not to improve upon the accuracy of the
conventional unscented transformation. Rather, the aim is to pro-
vide similar accuracy with a reduced number of sigma points. The
example given here demonstrates that the proposed approach is ca-
pable of achieving this aim. However, a reduced number of sigma
points does not necessarily mean a reduced computational expense
since the number of computations per sigma point is higher for the
proposed method. Therefore it is anticipated that the proposed
approach will nd most application in cases where a large propor-
tion of the elements of the argument are linear conditional on the
remaining elements or where the expense of computing and trans-
forming sigma points is large.
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