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ABSTRACT

We use the Ito calculus to prove that a general type of white
Levy noise will benefit subthreshold neuronal signal detection
if the noise process’s scaled drift velocity falls inside an inter-
val that depends on the threshold values. Levy noise gener-
alizes Brownian motion and includes several important jump
and impulsive random processes often found in neural and
financial-engineering models. A global Lipschitz condition
implies that additive white Levy noise can increase the mutual
information or bit count of several feedback neuron models
that obey a general stochastic differential equation. Simula-
tion results show that the same ‘stochastic resonance’ noise
benefit occurs for at least some impulsive or infinite-variance
(stable) Levy noise processes.

Index Terms— Levy noise, stochastic resonance, neural
signal detection, mutual information, jump diffusion

1. NOISE BENEFITS IN NEURAL SIGNAL
DETECTION

Small amounts of noise can enhance some forms of nonlinear
signal processing while too much noise degrades the signal
processing [6, 14, 19, 20, 26, 30]. Such stochastic resonance
(SR) noise benefits arise in many physical and biological sys-
tems [12, 18, 22, 31]. The Figure 2 panels show the character-
istic nonmonotonic signature of SR when the noise additively
perturbs a subthreshold stochastic neuron model for the three
white Levy noise types whose samples appear in Figure 1.

We generalize the recent ‘forbidden interval’ theorems [16,
17, 21, 24, 25] to the case of Levy noise with finite second
moments. Those theorems state that simple threshold neurons
will have an SR noise benefit if and only if the mean noise
level does not fall in a threshold-related interval. The theo-
rem below shows that such an SR noise benefit will occur if
the additive white Levy noise process has a scaled drift veloc-
ity that falls within a threshold-based interval. This holds for
general feedback neuron models that include common signal
functions such as logistic sigmoids or Gaussians. The result
requires a finite second moment. The last SR plot in Figure
2 shows that a noise benefit still occurs in the more general
infinite-variance case of at least some types of α-stable Levy
noise.

Levy noise has advantages over standard Gaussian noise
in neuron models. Adding white Levy noise more accurately
describes how the neuron’s membrane potential evolves than

do simpler diffusion models because the more general Levy
model includes not only pure-diffusion and pure-jump models
but jump-diffusion models as well [28]. Neuron models with
additive Gaussian noise are pure-diffusion models. These neu-
ron models rely on the classical central limit theorem for their
Gaussian structure and thus they rely on special limiting-case
assumptions of incoming Poisson spikes from other neurons.
This requires at least that the number of impinging synapses
is large and that they have small membrane effects due to the
small coupling coefficient or the synaptic weights [10]. So the
Gaussian noise assumption is more accurate for signal inputs
from dendritic trees. Fewer inputs come from synapses near
the trigger zone and they have large amplitudes due to their
voltage sensitive sodium channels [11].

2. LEVY NOISE AND CONTINUOUS NEURON
MODELS

We consider the noisy dynamical neuron models of the general
form

ẋ = −x(t) + f(x(t)) + s(t) + n(t) (1)

y(t) = g(x(t)) (2)

with initial condition x(t0) = x0. Here s(t) is the additive
net excitatory or inhibitory input forcing signal—either s1 or
s2, g is a static (usually threshold) transformation function,
and y(t) is the neuron’s output. The neuron feeds its activa-
tion or membrane potential signal x(t) back to itself through
−x(t) + f(x(t)) and emits the thresholded signal y(t) as out-
put. The neuronal signal function f(x) can be quite general.
n(t) is the additive white Levy noise with intensity scale κ.
We next describe Levy processes and the neuronal signal func-
tion f(x).

Levy processes [29] form a wide class of random processes
that include Brownian motion, α-stable motion, compound
Poisson processes, generalized inverse Gaussian processes, a-
nd generalized Hyperbolic processes. Levy processes can ac-
count for the impulsiveness or discreteness of the signal. Re-
searchers have used Levy processes to model diverse phenom-
ena such as financial data, network traffic, acoustic signals,
and storage processes [1, 4, 23]. A Levy process is a real-
valued adapted stochastic process with stationary and inde-
pendent increments in a filtered probability space (Ω,F , P,
(Ft)0≤t≤∞) where F0 contains all the P -null sets of F and
(Ft) is right continuous. So a real-valued adapted process

III  14131424407281/07/$20.00 ©2007 IEEE ICASSP 2007



Lt = (L(t), t ≥ 0) with L(0) = 0 (a.s) is a Levy process
if

1. L(t)−L(s) is independent of (Fs) for 0 ≤ s < t ≤ ∞
2. L(t)− L(s) has the same distribution as L(t− s)

3. Ls → Lt in probability if s→ t.

Any Levy process has a specific (infinitely divisible) form for
its characteristic function. The Levy-Khintchine formula gives
the characteristic function of L(t) as

E(eiuL(t)) = etη(u) for all 0 ≤ t, u ∈ R (3)

with the characteristic exponent or Levy exponent

η(u) = iuμ− 1
2
u2σ2u

+
∫
R0

(
eiuy − 1− iuy

1 + y2

)
ν(dy) (4)

for some μ ∈ R, σ ≥ 0, and measure ν on Borel subsets of
R0 = R\{0}. ν is a Levy measure and has the property that∫
R0

min{1, |y|2}ν(dy) <∞.

A Levy process has a drift, a Brownian motion, and a jump
component. The Levy-Khintchine triplet (μ, σ, ν) completely
determines these components. The Levy measure ν defines
the behavior of the jump component of L(t) and determines
the frequency and magnitudes of jumps. Jumps of any size
in Borel set B form a compound Poisson process with rate∫

B
ν(dy) and jump density ν(dy)/

∫
B

ν(dy) if the closure B
does not contain zero. If ν = 0 then L(t) is a continuous
Brownian motion for t ≥ 0 because then equation (3) takes

the form E(eiuLt) = et[iuμ− 1
2 u2σ2]—the characteristic func-

tion of a Gaussian random variable with mean μt and variance
tσ2. If ν(R) < ∞ then Lt is a compound Poisson process.
If ν(R) = ∞ then Lt is a purely discontinuous jump process
and has an infinite number of small jumps in any time interval
of positive length. Figure 2 shows one-dimensional samples
of such Levy processes. We assume one-dimensional Levy
processes with a finite second moment (E|Lt|2 <∞). A finite
second moment assumption excludes the thick-tailed family of
pure-jump infinite-variance α-stable processes (including the
α = 0.5 Levy stable case) [23]. But this assumption does not
imply that the Levy measure is finite (ν(R) < ∞). Normal
inverse Gaussian NIG(α, β, γ, μ) distributions are examples
of semi-thick-tailed pure-jump Levy processes that have infi-
nite Levy measure and possess moments of all order [27].

We can rewrite (1)-(2) in more general form as the Ito sto-
chastic differential equation [3]

dXt = b(Xt−)dt + c(Xt−)dLt (5)

Yt = g(Xt) (6)

for initial condition Xt0 = X0 where b(Xt−) = −Xt− +
f(Xt−) +St is a Lipschitz continuous drift term, c(Xt−) = a
is a constant Levy diffusion term, and dLt is a white Levy
noise with noise scale κ. Neuronal signal function f has the
general form that includes most common signal functions:
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Fig. 1. Sample paths of one-dimensional Levy processes: (a) Brownian mo-
tion with drift μ = 0.1 and variance σ = 0.15, (b) Jump-diffusion with
μ = 0.1, σ = 0.225, Poisson jump rate λ = 3, and uniformly distrib-
uted jump magnitudes in the interval [-0.2,0.2] (so ν(dy) = (3/0.4)dy for
y ∈ [−0.2, 0.2] and zero else), (c) Normal Inverse Gaussian (NIG) process
with parameter set (α = 20; β = 0, γ = 0.1; μ = 0), (d) α-stable process
with α = 1.9 and scale κ = 0.15 (μ = 0, σ = 0, and ν(dy) is of the form

k
|y|1+α dy).

• Logistic. The logistic signal function [15] is sigmoidal
and strictly increasing

f(x) =
1

1 + e−cx
(7)

for scaling constant c > 0. This signal function gives a bistable
additive neuron model.
• Hyperbolic Tangent. This signal function is also sig-

moidal and gives a bistable additive neuron model [2, 7, 13,
15]:

f(x) = 2 tanhx (8)

• Linear Threshold. This linear-threshold signal has the
form [15]:

f(x) =

{
cx |cx| < 1
1 cx > 1

−1 cx < −1
(9)

for constant c > 0.
• Exponential. This signal function is asymmetric and has

the form [15]

f(x) =
{

1− exp{−cx} if x > 0
0 else

(10)
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for constant c > 0.
• Gaussian. The Gaussian or ‘radial basis’ signal function

[15] differs from the other signal functions above because it is
nonmonotonic:

f(x) = exp{−cx2} (11)

for constant c > 0.
The above neuron models can have one-to-three fixed poi-

nts depending on the input signal and the model parameters.
The input signal is subthreshold in the sense that switching it
from s1 to s2 or vice versa does not change the output Yt of
(6). There exist θ1 and θ2 such that the input S is subthresh-
old when θ1 ≤ s1 < s2 ≤ θ2. The values of θ1 and θ2

depend on the model parameters. Consider the linear thresh-
old neuron model (1)-(2) and (9) with c = 2. A simple cal-
culation shows that if the input signal St ∈ {s1, s2} satisfies
−0.5 < s1 < s2 < 0.5 then the linear threshold neuron has
two stable fixed points (one positive and the other negative)
and has one unstable fixed point between them. So the input is
subthreshold because switching it from s1 to s2 or vice versa
does not change the output Yt.

3. LEVY SR IN CONTINUOUS NEURONS

We now prove that Levy noise can benefit the noisy continuous
neurons (5)-(6) and (7)-(11) with subthreshold input signals.
We assume that the neuron receives a constant subthreshold
input signal St ∈ {s1, s2} for time T . Let S denote the in-
put signal and Y denote the output signal Yt for a sufficiently
large randomly chosen time t ≤ T . We use mutual informa-
tion to measure the noise benefits because the input signal is
random [5, 21]. The Shannon mutual information of the dis-
crete input random variable S and the output random variable
Y is the difference between its unconditional and conditional
entropy [9]: I(S, Y ) = H(S)−H(S|Y ). Jensen’s inequality
implies that I(S, Y ) ≥ 0 [9]. Random variables S and Y are
statistically independent if and only if I(S, Y ) = 0. Hence
I(S, Y ) > 0 implies some degree of statistical dependence.
This implies that the system exhibits the SR noise benefit if
I(S, Y ) > 0, and if I(S, Y )→ 0 when noise parameters σ, ν
→ 0.

We prove Levy SR theorem with the stochastic calculus
and a limiting argument. This avoids trying to solve for the
process Xt in (5). The proof structure follows that of the ‘for-
bidden interval’ theorems [16, 17, 24]. The proof strategy is
that what goes down must go up. The proof assumes that the
nonnegative mutual information is positive for some level of
input-output correlation. Then the mutual information goes
to zero as the noise variance goes to zero. Hence the mutual
information must increase as the noise variance or standard
deviation increases from zero—and thus a noise benefit must
occur. The theorem requires the following technical lemma.
The proof is lengthy and we omit it for space reasons.

Lemma: Let b : R → R and c : R → R be measurable
functions that satisfy global Lipschitz conditions

||b(x1)− b(x2)|| ≤ K1||x1 − x2|| (12)

||c(x1)− c(x2)|| ≤ K2||x1 − x2|| (13)

for all x1, x2 ∈ R. Suppose

dXt = b(Xt−)dt + c(Xt−)dLt (14)

dX̂t = b(X̂t)dt. (15)

where dLt is a Levy noise with finite second moment and μ =
0. Then for every T ∈ R+ and for every ε > 0:

P [ sup
0≤t≤T

||Xt−X̂t||2 > ε] → 0 as σ, ν → 0. (16)

The lemma holds for any continuous neuron model that
has a neuronal signal function f(x) of the form (7)-(11) be-
cause its respective drift term b(Xt−) in (5) is globally Lip-
schitz in accord with (12). Conditions (12)-(13) ensure a uniq-
ue solution of (5).

We now state the theorem that gives a sufficient interval
condition for the SR effect in the continuous neuron models
(5)-(6) with neuronal signal functions (7)-(11). Lack of a nec-
essary condition broadens rather than lessens the scope of po-
tential SR effects in the neurons. The proof of the theorem is
similar to the proof of Theorem 1 in [25] and we here omit it.

Theorem: Suppose that continuous neuron models (5)-(6)
with constant Levy diffusion term c(Xt−) = a and (7)-(11)
have additive white Levy noise with drift velocity μ and that
the input signal S(t) ∈ {s1, s2} is subthreshold: θ1 ≤ s1 <
s2 ≤ θ2. Suppose that there is some statistical dependence be-
tween the input random variable S and the output random vari-
able Y so that I(S, Y ) > 0. Then the neuron models exhibit
the nonmonotone SR effect in the sense that I(S, Y ) → 0 as
the Levy noise parameters σ, ν → 0 if θ1−s1 ≤ aμ≤ θ2−s2.

Figure 2 (a)-(b) show simulation instances of the theo-
rem for finite-variance jump-diffusion and pure-jump addi-
tive white Levy noise. Small amounts of additive Levy noise
in a bistable potential neuron model produces the SR effect
in terms of the noise-enhanced Shannon mutual information
I(S, Y ) between realizations of a random (Bernoulli) subthre-
shold input signal S and the neuron’s thresholded output ran-
dom variable Y . The SR effect in Figure 2 (c) lies outside the
scope of the theorem because it occurs for infinite-variance
α-stable noise. We considered signal-independent Levy noise
(c(Xt−) = constant) in equation (5) but the lemma and a simi-
lar theorem also hold for signal dependent noise when c(Xt−)
is bounded. We also have theoretical and simulation evidence
that the FitzHugh-Nagumo (FHN) spiking neuron model [8,
10] shows the SR effect for additive white Levy noise.

4. CONCLUSION

We have shown that a general type of ‘forbidden interval’ SR
theorem holds for a wide range of Levy processes and a wide
range of feedback stochastic neuron models. The underly-
ing lemma requires that the Levy process have a finite second
moment and thus it does not apply to the infinite-variance α-
stable SR that Fig. 2 (c) demonstrates. An open research ques-
tion is whether a more general Levy result holds that drops the
finite-variance assumption and yet accounts for α-stable Levy
SR results.
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Fig. 2. Mutual information Levy noise benefits in continuous neurons. Additive white Levy noise dLt increases the mutual information of the bistable
potential neuron (1)-(2) and (8) for the subthreshold input signal s1 =−0.3, s2 = 0.4, and a = 1. The types of Levy noise dLt are (a) Gaussian with uniformly
distributed jumps, (b) pure-jump Normal Inverse Gaussian (NIG), and (c) symmetric α-stable noise with α = 1.9 (thick-tailed bell curve with infinite variance
[23]). The dashed vertical lines show the total min-max deviations of the mutual information in 100 simulation trials.
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