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ABSTRACT 

Positive alpha-stable distribution is used to model the non-
negative quantity with impulsive property. Based on 
negative-order moments, three methods are used to estimate 
the parameters of positive alpha-stable distribution in this 
paper. First, a ratio estimator based on the ratio of negative-
order moments is presented whose performance is 
significantly determined by the choice of order. Second, a 
new estimator with explicit closed form is presented and it 
is shown to be robust compared to the ratio estimator. Last, 
an iterative estimator is proposed and it achieves better 
performance only using fewer samples in each step 
computation. Monte Carlo simulation results demonstrate 
that the proposed iterative estimator is high efficient for the 
positive alpha-stable distribution. 

Index Terms— Positive alpha-stable distribution, 
negative-order moments, symmetric alpha-stable 
distribution, iterative parameter estimator, Monte Carlo 
simulation

1. INTRODUCTION 

Alpha-stable distribution is widely used for the modeling of 
impulsive signals and phenomena such as underwater 
acoustic signals, low-frequency atmospheric noise and 
many types of man-made noise [1]. The shape of stable 
distribution is determined by characteristic parameter 
and symmetry parameter . When  is restricted to the 
range 0,1  and  is fixed at 1, the alpha-stable 
distribution reduces to the positive alpha-stable ( P S )
distribution. It is worth pointing out that P S  distribution 
is totally skewed with all of the probability concentrated on 

0, , so it is reasonable to model the non-negative 
quantity such as energy and power with P S  distribution 
[2]. It is well known that any symmetric alpha-stable ( S S )
distribution, which is bell-shaped and symmetric about the 
origin, can be represented as the product of a zero mean 
Gaussian distribution and the square root of a P S

distribution. This property is usually used for the generation 
of S S  distributed random samples [3]. 

Based on negative-order moments introduced in [1,2], 
we present three methods to estimate the parameters of 
P S  distribution in this paper. First, we present a ratio 
estimator based on the ratio of negative-order moments. 
This estimator is affected by the choice of p . Once p  is 
chosen inappropriately, performance of the estimator is 
degraded seriously. Second, we present an alternative 
log P S  estimator whose idea is similar to the log S S
estimator used for the parameter estimation of S S
distribution [1]. This estimator is completely determined by 
samples, and it is easy to compute because of the explicit 
closed form. Last, we propose an iterative log P S
estimator that achieves better performance by fewer samples 
according to the iterative computation of sample block. 
Monte Carlo simulation demonstrates the high efficiency of 
the iterative log P S  estimator. 

2. RATIO ESTIMATOR FOR P S  DISTRIBUTION 

The P S  distribution can be described by its characteristic 
function 

exp 1 sgn tan 2t t i t ,        (1) 

 where 0 1  is the characteristic parameter and 0
is the scale parameter. Here, sgn t  denotes the sign 
function. If X  is a P S  random variable, the negative-
order moment of X  can be written as 
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Here, x  denotes the Gamma function [2]. Then, we 
can take the ratio 
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It is seen that  can be numerically evaluated from (3). 
Once  is obtained,  can be estimated from (2) as 
follows 
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In the ratio estimator (3) and (4), pE X  can be 

estimated by the empirical moments calculated from the 
samples. It can be shown that the estimator proposed by 
Pierce is just a special case of (3) when 0.5p . Table 1 
illustrates the average and standard deviation values (in 
parentheses) of Monte Carlo simulation results based on the 
ratio estimator. Various numbers of samples from a standard 
(unit scale parameter) P S  distribution were generated 
using the method introduced in [3] and the experiment was 
repeated 100 times independently. Obviously, performance 
of this estimator greatly relies on the choice of p . The 
standard deviation of estimators decreases as p  increases 
for a fixed sample size. When p  is fixed, generally, 
sufficient samples lead to good performance. 

Table 1 Performance of the ratio estimator (True 0.5 ,
1 )

Number of
Samples

1.5p
ˆ

0.5019
(0.0168)

ˆ
0.9957

(0.0602)1000

2000

5000

1p
ˆ ˆ

0.5p
ˆ ˆ

0.5012
(0.0126)

0.9980
(0.0406)

0.4993
(0.0079)

1.0021
(0.0270)

0.5004
(0.0126)

1.0025
(0.0422)

0.4998
(0.0075)

0.9994
(0.0281)

0.5009
(0.0053)

0.9972
(0.0188)

0.4998
(0.0074)

1.0029
(0.0308)

0.4998
(0.0062)

0.9993
(0.0252)

0.4999
(0.0040)

1.0002
(0.0148)

3. log P S  ESTIMATOR FOR P S  DISTRIBUTION 

Let X  be a random variable with P S  distribution, then 
its negative-order moment satisfies (2). We can rewrite 

pE X  as loge p XE  and define a new random variable 

logY X . Therefore, 
loge e , 0p p X pYE X E E p    (5) 

where e pYE  can be regarded as the moment-generating 
function of Y .Expanding it into the Taylor series, we can 
write e pYE  as 
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Here, 
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moments of Y  of any order can be obtained by 
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Considering the first-order and second-order moments 
of Y , after some manipulation, we can obtain 
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Here, eC  denotes the Euler’s constant. Since  is 
isolated in (9), it can be easily obtained by Var Y , and 
can be estimated from (8) immediately. 

In (8) and (9), mean and variance of Y  can be 
estimated from the sample mean and the sample variance, 
respectively. Compared to the ratio estimator (3) and (4), 
the log P S  estimator are only determined by data sample 
and it is computationally efficient owing to the explicit 
closed form. Table 2 shows the Monte Carlo simulation 
results based on the log P S  estimator and the 
experimental conditions are the same as the Table 1. It must 
be stressed that performance of log P S  estimator may be 
inferior to the ratio estimator with appropriate choice of p
(e.g., 1000 samples and 0.5p  for the ratio estimator), 
but performance of the ratio estimator is seriously degraded 
when p  is chosen improperly (e.g., 1000 samples and 

1.5p  for the ratio estimator). So we believe that the 
log P S  estimator is robust compared to the ratio estimator. 

Table 2 Performance of log P S  estimator (True 0.5 ,
1 )

Number of
Samples ˆ

0.5002
(0.0157)

ˆ

0.9969
(0.0322)1000

2000

5000

0.5009
(0.0109)

0.9975
(0.0231)

0.5001
(0.0073)

1.0022
(0.0171)

4. ITERATIVE log P S  ESTIMATOR FOR P S
DISTRIBUTION 

It is seen that log P S  estimator processes all samples at 
one time. However, a reasonable choice is to update the 
estimated parameter values iteratively in order to achieve 
memory efficiency. Let total samples be divided into B
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non-overlapping blocks and each block contains M samples. 
Denoting ˆ k  and ˆ k  as the estimated parameter 
values derived from the first k  (1 k B ) blocks, we hope 
that ˆ k  and ˆ k  can be obtained from the previous 

estimated values ˆ 1k  and ˆ 1k . Donating 1,kE  as 
the sample mean calculated from the first k  blocks, then 
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Here, kE  denotes the sample mean calculated from the 
k th block. Similarly, denoting 1,kV  as the sample variance 
calculated from the first k  blocks, then 
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Expanding the square-items in above series, after some 
manipulation, we can obtain 
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where kV  denotes the sample variance calculated from the 
k th block. Generally, 1kM  and 1 1k M , so (12) 
can reduces to 
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Substituting (8) and (9) into (10) and (13), respectively, 
we can obtain the iterative log P S  estimator by 
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and 
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Firstly, ˆ k  can be obtained from (15). Then, ˆ k
can be obtained from (14). Table 3 shows the Monte Carlo 
simulation results based on the iterative log P S  estimator 
with 100 independent realizations. We can see that the 
number of data block is a key factor determining the 
performance of the iterative estimator, which is illustrated in 
Fig. 1. Obviously, better performance is achieved with 
bigger block size. Compared to the log P S  estimator 
presented above, the proposed iterative one gets similar 
estimated results in the same condition of all samples (e.g., 
5000 samples), but much fewer samples are required in each 
step computation. This demonstrates the high efficiency of 
the iterative log P S  estimator. 

Table 3 Performance of the iterative log P S  estimator 
(true 0.5 , 1 )

Samples of
each Block

50B
ˆ

0.4997
(0.0086)

ˆ

1.0014
(0.0177)50

100

200

100B
ˆ ˆ

200B
ˆ ˆ

0.5006
(0.0063)

0.9995
(0.0150)

0.5005
(0.0049)

0.9990
(0.0108)

0.5007
(0.0071)

0.9970
(0.0156)

0.5003
(0.0042)

1.0000
(0.0085)

0.5000
(0.0035)

0.9993
(0.0077)

0.5007
(0.0052)

0.9989
(0.0107)

0.5000
(0.0034)

1.0000
(0.0070)

0.5001
(0.0026)

1.0006
(0.0055)

(a) Average of ˆ  compared with the true value 0.5
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(b) Standard deviation of ˆ

(c) Average of ˆ  compared with the true value 1

(d) Standard deviation of ˆ
Fig. 1.  Performance of the iterative estimator with respect 
to the number of data blocks 

5. CONCLUSIONS 

In this paper, we use the negative-order moments to 
estimate parameters of P S  distribution and present three 
methods. First, we present ratio estimator based on the ratio 
of negative-order moments and we can see that the 
estimator proposed by Pierce is just a special case of (3). It 
can be shown that the ratio estimator results in bad 
performance when the order p  is chosen inappropriately. 
Second, we present the log P S  estimator with explicit 
closed form. This estimator is completely determined by 
samples and it is robust compared to the ratio estimator. 
Last, we propose the iterative log P S  estimator that 
achieves much better performance only by fewer samples in 
each step computation. Monte Carlo simulation results 
demonstrate the high efficiency of the proposed iterative 
estimator. 
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