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ABSTRACT

In this paper, we study a problem of global optimization of
an energy functional by a stochastic dynamics with a general
diffusion coef cient. The main result is that adapting the dif-
fusion coef cient to the shape of the functional enables the
dynamics to escape wide local minima, and attracts it to nar-
rower global minima that are missed by conventional diffu-
sions. We discuss how to properly choose the diffusion coef-
cient and show numerically the superior performance of the

resulting optimization algorithm.

Index Terms— Optimization methods, diffusion equa-
tions, Markov processes

1. INTRODUCTION

Gibbs eld based stochastic methods have long been recog-
nized as an effective approach to problems of global optimiza-
tion, see for instance [1, 2, 3, 4, 5, 6]. Their essence can be
summarized in the following way. Consider an equilibrium
stochastic dynamics with a stationary Gibbs measure, where
the latter is associated with some energy functional H . The
dynamics is then changed so that it is no longer in equilib-
rium, and its limit distribution is concentrated on the set of
global minima of H . This approach to optimization is gener-
ally called simulated annealing.

More precisely, consider a stochastic diffusion dynamics,
whose invariant measure is given by

dμ(x) =
1

Z
e−βH(x) dm(x), (1)

where X = [a, b]d ⊂ R
d, H : X → R is the energy func-

tional, andm - normalized Lebesgue measure on X . We seek
to nd the set of global minima of H . The classical tech-
nique of solving this problem is to stochastically perturb the
deterministic gradient descent:

dX(t) = −∇H(X(t)) dt+σ(t) dW (t), X(0) = X0, (2)

where ∇ denotes the spatial gradient,W (t) is a realization of
the standard Brownian motion, and X0 is the starting point.

It is known that in order for the limiting measure to con-
centrate on the set of global minima ofH , the diffusion coef-
cient should slowly decay to zero. We conventionally refer

to the behavior of the function σ as the cooling schedule of
our dynamics. We call this standard dynamics (spatially) ho-
mogeneous because the diffusion coef cient does not depend
on the state variableX(t).

In this paper, we propose a new diffusion process whose
distinguishing feature is a spatially inhomogeneous diffusion
coef cient. It is important that the stationary Gibbs distri-
bution of the newly introduced dynamics be identical to that
of the homogeneous diffusion. It is, however, shown that by
appropriately constructing the inhomogeneous diffusion, one
can improve the speed of convergence of the overall dynamics
to the stationary distribution.

The inhomogeneous diffusion coef cient that leads to the
optimal speed of convergence depends on the functionalH at
hand. Its exact form for a general H continues to be an open
problem. Of particular interest in many applications includ-
ing signal and image ltering, is a situation where the global
minimum of H is so narrow that a standard diffusion tends
to overlook it. We demonstrate that it is possible to adapt
the diffusion to the cost functional and to hence alleviate this
problem. The performance of the adapted diffusion is shown
to offer superior performance in comparison to its classical
counterpart.

This paper is organized as follows. In the second sec-
tion we formulate the problem mathematically and state re-
sults on stochastic dynamics and its approximations by non-
homogeneous Markov chains. In the third section we com-
pare the convergence properties of the modi ed diffusions
and of the Langevin dynamics using numerical simulations.
In the fourth section, we conclude and discuss future work.
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2. PROBLEM STATEMENT AND THEORETICAL
RESULTS

Let X = [−R,R] ⊂ R, and denote by F (X) a space of
functions onX with periodical boundary conditions. Let H :
X → R be a function bounded from below. For de nitive-
ness, assume that

H(x) ≥ 0, ∀x ∈ [−R,R], min
x∈[−R,R]

H(x) = 0. (3)

Proposition 1 ([7]). Consider a continuous time Markov pro-
cess onX whose in nitesimal generatorLa is given by

Laf(x) =
1

2
δ(a)ω(x)f ′′(x)

−

(
ω(x)H ′(x) −

1

2
δ(a)ω′(x)

)
f ′(x), f ∈ F (X).

(4)

Then the stationary distribution γ̃a has a Gibbs density, i.e.

dγ̃a(x) =
e−

2H(x)
δ(a)

Zδ(a)
dm(x), (5)

where Zδ(a) is a normalization constant, and m is the nor-
malized Lebesgue measure (length) onX .

Consider an approximation in time of the above diffusion
process. It is a Markov chainXn given by

Xn+1 = Xn −

(
ω(Xn)H

′(Xn) −
1

2
δ(a)ω′(Xn)

)
a

+
√
aδ(a)ω(Xn)Wn,

(6)

where a, δ(a) > 0 are parameters, ω(x) is a xed nonneg-
ative smooth function and (Wn) is an i.i.d random sequence,
and E[Wn] = 0, var[Wn] = 1.

Proposition 2 ([8]). For any a, δ(a) > 0 Markov chain (6)
has a stationary distribution, which will be denoted γa.

We now state the main result that shows that as a → 0,
the stationary measure γa becomes concentrated on the set
of global minima of H . Toward that end, we introduce the
following notation. We denote by Oε(x) the ε-neighborhood
of any x ∈ X , and by Uε(H) the union of ε-neighborhoods
of all global minima ofH :

Oε(x) = X∩(x−ε, x+ε), Uε(H) =
⋃

x:H(x)=0

Oε(x). (7)

Theorem 1 ([7]). Let ε > 0 and assume the existence of
C0 > 0, such that δ(a) ≥ − C0

ln a . Then γa(Uε(H)) → 1 as
a→ 0 and δ(a) → 0.

The analysis of the convergence along with the form of
the modi ed drift suggest that the function ω could be chosen
inversely proportional to H ′:

ω(X) ≡ ω (H ′(X))

=

{
1/|H ′(X)|, |H ′(X)| > k
1/k, |H ′(X)| ≤ k,

(8)

where the suitable choice of parameter k ensures the stabil-
ity of the numerical algorithm in the neighborhood of local
nimima, whereH ′(X) ≈ 0. We demonstrate in the following
section that this choice of ω leads to a faster convergence and
to hence better optimized results.

3. NUMERICAL SIMULATIONS

In this section we present simulation results, which demon-
strate the performance of the newly proposed modi ed diffu-
sion versus the standard dynamics. In both simulation cases
we use the same cooling schedule:

an = a0e
−Kn, (9)

where K > 0, K 
 1, e.g. K = 0.1. Functions H are
chosen such that its global minima are narrow relative to other
local minima, which is one of the most challenging situations
in applications. We observe that by the choice of ω in (8),
wide minima are naturally disfavored, as the jump size is large
in such areas. Points then tend to concentrate in the vicinities
of the global minima, where the value of H ′ is larger, and
hence the random jumps are naturally suppressed.

3.1. 1D example

Consider the function

H(X) = X2 cos 10X, X ∈ [−π, π], X0 = 0. (10)

We let 100 points start fromX0 and evolve each according to
its own realization of the diffusion process. We note that for
smaller a0, the classical diffusion fails to leave local minima,
while higher values of a0 result in uniform coverage of the
entire domain, similar to the high-temperature regime. The
modi ed diffusion provides, as expected, a great improve-
ment at locating the global minima (see Figures 1-3).

3.2. 2D example

We now consider a two dimensional example

H(X, θ) = βΦ1(X, θ) + (1 − β)Φ2(X), (11)

where Φ1 and Φ2 are “data delity” and “smoothness” terms
correspondingly:

Φ1(X, θ) = ‖X − θ‖2,

Φ2(X) = −
1

1 + 1
d2

(X1 −X2)2
,

X = (X1, X2)
�

(12)

with θ ∈ (−5, 5)�, X0 = θ, β = 0.01, d = 0.5, a0 = 0.5.
We observe (see Figures 4-6) that as in previous examples,

particles tend to cluster around the global minimum under the
modi ed diffusion, whereas they hover around a local mini-
mum for a small discretization step, and spread over the entire
computation domain if the step is too large.
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Fig. 1. Classical 1D diffusion: X0 = 0, a0 = 0.5

4. CONCLUSIONS

Problems of global optimization are of great theoretical as
well as practical importance. Gibbs elds-based methods have
a tremendous potential because of their tractability and ease
of implementation. The main shortcoming of these methods
is the slow speed of convergence to the global minimum.

In this paper we have considered diffusion dynamics with
a general diffusion coef cient. We have shown that the speed
of convergence of a particle to a global minimum may be
improved by choosing the diffusion coef cient adapted to a
particular functionalH . The resulting dynamics then outper-
forms its classical counterpart at nding the global minimum
of an energy functional.

We refer to our proposed approach as adapted diffusion
based algorithm since the choice of the function ω(x) de-
pends on the energy function H . The main goal of this paper
is to show that we can construct a non-homogeneous diffu-
sion which escapes wide local minima and stays at deep and
tight minima of the energy functionH . When solving exam-
ples where the global minimum is very narrow, we proceed by
cooling the dynamics where the value ofH ′ is large and heat-
ing it up whenH ′ ≈ 0. In so doing, we force the diffusion to
favor the global minimum and reject other local extrema.

As may be seen from demonstrated simulations, our pro-
posed algorithm reveals deep and tight minima, whereas the
clasical diffusion escapes these minima for a short time and
prefers to stay at local wide minima. That is an important
property, which is desirable in global optimization problems
for functionals with deep and tight minima.

3 2 1 0 1 2 3

5

0

5

Derivative of H(x)

x

H
′ (x

)

3 2 1 0 1 2 3

0.5

0

0.5

Final distribution of points

x

H
(x

)

3 2 1 0 1 2 3
0

0.5

1

1.5
Histogram of points

Fig. 2. Classical 1D diffusion: X0 = 0, a0 = 50
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Fig. 3. Modi ed 1D diffusion: X0 = 0, a0 = 0.5

Fig. 4. Classical 2D diffusion: X0 = (−5, 5)�, a0 = 0.9

Fig. 5. Classical 2D diffusion: X0 = (−5, 5)�, a0 = 20

Fig. 6. Modi ed 2D diffusion: X0 = (−5, 5)�, a0 = 0.5
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