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ABSTRACT

Empirical mode decomposition (EMD) has lately received much at-
tention due to the many interesting features that exhibits. How-
ever it lacks a strong theoretical basis which would allow a per-
formance analysis and hence the enhancement and optimization of
the method in a systematic way. In this paper, an investigation of
EMD is attempted in an alternative way: The interpolation points
and the piecewise interpolating polynomials for the formation of the
upper and lower envelopes of the signal are optimized based on a
genetic algorithm framework revealing important characteristics of
the method which where previously hidden. As a result, novel di-
rections for both the performance enhancement and the theoretical
investigation of the method are unveiling.

Index Terms— Empirical Mode Decomposition, Genetic Algo-
rithm

1. INTRODUCTION

Empirical mode decomposition (EMD) [1] is a relatively new, data-
driven adaptive technique for analyzing multicomponent signals into
a number of elementary amplitude and frequency modulated (AM/FM)
zero mean signals termed intrinsic mode functions (IMFs). The task
of EMD is to iteratively reveal locally the slow oscillating part of
the signal according to a procedure called sifting which involves the
computation of an upper and a lower envelope which enfold the sig-
nal [2]. Although the validity and the robustness of EMD have been
shown in a number of applications [3], [4], it lacks a well established
theoretical analysis which would permit a convergence proof and a
direct, systematic optimization of the method. Due to the nature of
EMD and the obscure way it operates, the so far published modi-
fications of the initially proposed algorithm leading to performance
improvement are limited [5], [6].

There are two crucial issues related to EMD namely, the best
interpolation method [7] and the optimized positioning of the inter-
polation points. An answer to the above open problems can lead to a
better understanding of the sifting process and subsequently can re-
veal ways to the performance enhancement of the algorithm. In this
paper EMD is examined with the aid of appropriately designed mul-
ticomponent signals which allow as to know explicitly the optimum
outputs that the EMD should “ideally” provide. The knowledge of
the desired EMD outputs allow the use of genetic algorithm search-
ing techniques for the estimate of parameters related to optimized
IMF extraction.

This work was performed as part of the BIAS consortium under a grant
funded by the EPSRC under their Basic Technology Programme.

2. EMD ALGORITHM

The task of EMD is to decompose a multicomponent signal � � � � into
a number of virtually monocomponent IMFs . Each one of them, say
the first one � � � � , is obtained iteratively through the sifting process.
According to this, during the � � � � � th sifting iteration the temporal
IMF estimate 	� 
 � � � is getting improved according to the next steps1
(some of the quantities derived are shown in Fig. 1):

1) Specify some time instances � � 
 � � � � � � � � � � � � � � � , � � 

� � � � � � � � � � � � � � � called nodes and the corresponding IMF values 	� � � 

� 	� 
 � � � � � � � � � � � 	� 
 � � � � � � � , 	� � � 
 � 	� 
 � � � � � � � � � � � 	� 
 � � � � � � � called
interpolation points. These points are utilized in the formation of
two envelopes, an upper one and a lower one, which enfold the tem-

poral estimate 	� 
 .
2) Interpolate, according to a predetermined scheme, e.g. natural

cubic spline interpolation, the points defined in the first step in order
to form the upper � � � � � � and the lower envelopes � � � � � � and compute
the mean envelope  
 ! � � � � 
 � � � � � � � � � � � � � � � " # .

3) Obtain the refined estimate of the IMF as 	� 
 ! � � � � 
 	� 
 � � � $
 
 ! � � � � and proceed from step 1 again unless a stopping criterion

has been fulfilled. In that latter case, set � � � � 
 	� 
 ! � � � � .
Exactly the same procedure is then applied to the residual signal� % � � � 
 � � � � $ � � � � for the extraction of the next IMF. For this

reason the analysis in this paper is focused on the extraction of the
first IMF only.
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Fig. 1. A multicomponent signal and quantities related to EMD.

Ideally, the final result of each sifting process is the extraction,
along the time axis, of the faster oscillations preserving at the same
time their amplitude. For example, consider the case where the com-
plex signal consists of & AM-FM modulated monocomponent sig-

1For the first iteration, ' ( ) * is used as temporal IMF estimate +, � ( ) * .
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nals � � � � � �� � 	 
 �
� � � � � �� � 	 
 �

� � � � 
 � � � � � � � � � � � � � (1)

In this scenario, EMD should be able to extract, at any time instant,
this signal out of � that locally has a highest frequency. Under
the assumption of � � � � � � � � � � � for any � � � and for all time
instances � , the first desired estimated IMF has to be equal to � 
 � � � .
The above assumption will now be adopted since it does not affect
the analysis or the findings of this work which are still valid in the
case of frequency-overlapped signal components.

Considering that �� 
 � � � � � � � � � � 
 � � � , �� � � � � � �� 
 � � � �� � � � � � � � � � ��  � � � � ��  ! 
 � � � � �  � � � , the estimate of � � � � after "
sifting iterations can be written as

��  � � � � � � � � � � � 
 � � � # � � � # �  � � � � � � � � � � $  � � � (2)

with $  � � � defined here as the total mean envelope. Equation (2)
reformulates the sifting process as an iterative procedure for the es-
timation of the slow oscillating local mean of the multicomponent
signal which, as will be seen, is a perspective that offers certain ad-
vantages. Assuming that we require the decomposition to be exact
then the optimum total mean envelope which leads to the accurate
decomposition of the first signal, i.e., � � � � � � � � � � $ % & ' � � � �

� 
 � � � , is given by the sum of the ( � ) lower frequency signals$ % & ' � � � � * �� 	 � �
� � � � .

A question that arises with respect to EMD is: Are there opti-
mum interpolation points having specific properties, and if yes, how
well are they approximated by the local extrema, i.e., the maximum
and minimum extrema which are usually adopted in practice? The
intersection points, + , , between the optimum mean envelope and
the signal provide useful information about the possible positions of
the optimum interpolation points:+ , � - . / 0 
 � � � � � . / 0 1 2 � 3 � 4 $ % & ' � � � � � � � � 56 + , � 3 � 4 � 
 � � � � 7 5 � (3)

The interpolation points of the upper and the lower envelope, should
be selected in a way capable of leading to estimated mean enve-
lope equal to $ % & ' � � � . At the same time, the upper and the lower
envelope should be over and under the mean envelope respectively.
Investigating Fig. 1, it can be argued that, each one of the intervals� . / 0

�
� . / 0

�
8 
 � can only contain interpolation points which belong

exclusively to either the upper or the lower envelope depending on
whether the residual signal is “over” or “under” $ % & ' � � � . In Fig. 1,
the intervals that correspond to upper or lower envelopes are shown
with gray or black mean envelope respectively. In the next section,
the optimum interpolation points will be detected by means of a ge-
netic algorithm (GA) search procedure.

3. GA-BASED EMD OPTIMIZATION: BEST
INTERPOLATION POINTS DETECTION

In section 2 it was seen that the use of appropriately designed mul-
ticomponent signals allow us to know in advance the intervals along
the time axes with nodes which explicitly correspond to either the
upper or the lower envelope. This fact will be exploited in order to
efficiently detect the best ones among all the possible interpolation
points by means of a GA-based search procedure. Note here, that a
modified EMD with the GA embedded in it is not being proposed
here. The GA is simply being used in order to investigate the way
that EMD processes the signals and to reveal directions leading to
performance enhancement.

Consider that there are $ intervals that are able to contain upper
envelope nodes 9 : 0 ; � 3 � . / 0

�
� . / 0

�
8 
 � � � 4 $ % & ' � � � � � � � � for � <� . / 0

�
� . / 0

�
8 
 � 5 , ) = > = $ and ( intervals that are able to con-

tain lower envelope nodes 9 ? 0  � 3 � . / 0
�

� . / 0
�

8 
 � � � 4 $ % & ' � � � �� � � � for � < � . / 0
�

� . / 0
�

8 
 � 5 , ) = " = ( . Also assume that in each
interval there is explicitly one node. It is easy to realize that this
assumption in general results in a number of nodes similar or some-
what larger than the one that results from the standard local extrema
case. The optimization which is accomplished with the aid of the GA
is as follows: Minimize the relative error between the actual mean
envelope $ % & ' � � � and the estimated total mean envelope $  � � � af-
ter a preset number of " sifting iterations with respect to the adopted
upper and lower envelope node vectors + @ and + A respectively.

The � th chromosome in the adopted GA has the form B
�

�- C. : 0 
 � C. : 0 � � � � � � C. : 0 D � C. ? 0 
 � C. ? 0 � � � � � � C. ? 0 E 2 , where C. F 0 ; denotes a ran-
dom value in the interval 9 F 0 ; . The fitness function comprises a num-
ber of steps:

1) Split the chromosome in the upper and lower envelope node
vectors + @ and + A and compute the corresponding interpolation points.

2) Perform " times the sifting iteration steps 2 and 3 (see section
2) using in each iteration the same nodes as they were defined by the
chromosome under consideration in order to estimate the total mean
envelope $  � � � from (2).

3) Compute the chromosome fitness with the following error
function applied to the sampled signales:

G � H� � 	 
 I $ % & ' � � � � $  � � � I J � #
�� K L M N O

� P Q R
S T U O

� P I �  ! 
 � � � � V W N � � � I J � #
�' K L M X O ' P Y R

S T U O ' P I �  ! 
 � � � � V W X � � � I J � (4)

The first term deals with the main objective of the optimization pro-
cedure, i.e. to provide accurate mean envelope estimates, while the
second and the third terms guarantee that the interpolation functions
will be envelopes which will “tightly include” the processed signal.

The application of the GA optimization scheme presented above
will be realized in a multicomponent signal constituted from the sum
of the three monocomponent signals shown in Fig. 2. The GA is
used in order to detect the upper and lower envelope nodes that opti-
mize the extraction of the first monocomponent signal after the first
sifting iteration. The error bars graphs in Fig. 2(a)-(j) show the rel-
ative error between the optimum and the estimated mean envelope
along the time axis where the dark and the light areas correspond to
high and low error values respectively. The error bars are associated
with three different sets of interpolation points: The points detected
by the GA (a1, b1, c1), the local extrema of the desired monocom-
ponent signal � 
 � � � which is about to get extracted (a2, b2, c2), and
the local extrema of the multicomponent signal � � � � (a3, b3, c3, c4)
which actually correspond to the standard method adopted in prac-
tice. Moreover, error bars (a1-a3) and (b1-b3) correspond to 3rd and
5th order natural splines interpolation methods respectively. It can be
easily observed, particularly in the higher order spline cases, that the
optimized interpolation points estimated by the GA tend to coincide
with the extrema of the signal which is about to get extracted. Here-
after, we will refer to the extrema, nodes and interpolation points of
the desired signal to be extracted as desired and to the extrema, nodes
and interpolation points estimated by a GA procedure as optimized.

Error bars 2(c1-c4) depict the relative error after 5 sifting oper-
ations and 3rd order splines. In (c1-c3) the optimized, the desired
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Fig. 2. Relative error between the estimated and the actual mean
envelope after the first IMF extraction of a signal consisted of the
three monocomponent signals shown on top.

or the interpolation points resulted from the local extrema of the
multicomponent signal are set constant in every sifting iteration. In
contrast to that, in the case of error bar c4, which corresponds to
the standard EMD method, the extrema of the multicomponent sig-
nal are recomputed in each sifting iteration. Here is the power of the
EMDmethod, which although adopting interpolation points far from
the best ones, generally succeeds in converging to them. When the
extrema obtained from the multicomponent signal serve as interpo-
lation points throughout the rest of the sifting iterations, the results
are disappointing (see Fig. 2(c4)).

In practice, neither the extrema of the desired signals are known,
nor can they be estimated with the aid of a GA. The maxima and min-
ima of the multicomponent signal serve as estimates to the desired
interpolation points and it should be expected that the closer the es-
timated extrema are to the extrema of the higher frequency signal is
the better the ”extraction” of this signal will be. The development of
specific optimized methods for the interpolation points is beyond the
scope of this paper and is let for future research.

4. GA-BASED EMD OPTIMIZATION: INVESTIGATION
ON IMPROVED INTERPOLATION SCHEMES

Although in Fig. 2 it was observed that incrementing the order of
the natural splines leads to an improvement in the performance of
EMD this is not a general conclusion and depends on the frequency
difference between the fast oscillating monocomponent signal and
the rest of them. In this section, the GA-based optimization of the

piecewise polynomials which form the envelopes will be realized
while the interpolation points will stay fixed to the desired ones.

For the construction of the envelopes, e.g. the upper one, it is
assumed that the corresponding interpolation points � � � � �

� � � 	 
� 
 � are linked with � 
 	 4th order polynomial curves2 � � � � � �� � �
� � � � � � �

� � � � � � �
� � � � � � �

� � � � � �
�
, � � �

� 
 � 
 � � �
�

� � . Moreover,
the polynomials share the following properties� � � � � �

� � � � � � � �
� � (5)� � � � � �

�
� � � � � � � � �

�
� � � (6)� � � � � �� � � � � �  ! " � � � �

# � � � �� � � � � �  ! " (7)

The continuity in the first derivative guarantees at least the minimum
smoothness at the transitions between the polynomials at the inter-
polation points.

Each chromosome in the GA has $ % � � � & � genes ' �( ) * �
+

� � � � , , , � ) * �
+

� � - � ) * �
+

� � � � , , , � ) * �
+

� � - � ) * �
+

. � � � , , , � ) * �
+

. � / � ) * �
+

. � � � , , , � ) * �
+

. � / 0
which represent the values of the first and the second derivatives of
the polynomials at the interpolation points, i.e.:� � � � � �� � � � � �  ! " 1 2 � ) * �

+
� �

�
� � (8)� � � � � � �� � � � � � �  ! " 1 2 � ) * �

+
� �

�
� � (9)

Equations (5)-(9) form � 
 	 linear systems of equations from which
the unknown parameters3 � � �

�
� � � �

�
� � � �

�
� � � �

�
� � � �

� 4 and hence, the upper envelope can be
easily computed. Using the last $ % & genes of the chromosomes,
the lower envelope can be computed in a similar way. The mean
envelope is computed for all the chromosomes and their fitness is

given by
5 � 6 7

� � � � & * �
+

8 9 � � � � 
 : * �
+

� � � � � � � . The task of GA is
to search for the optimum derivatives that the piecewise polynomial
should have at the interpolation points. Presumably, the derivative
values determines the shape of the envelopes. The above GA-based

3000 3500 4000 4500

Multicomponent
signal

Fig. 3. Upper envelope constructed either by natural cubic spline
interpolation (thin curve) or by GA-optimized piecewise polynomial
interpolation (dashed curve).

optimization procedure is applied on a portion of the signal depicted
in frequency domain on the top of Fig. 4, namely from 3000 to 4500
sec. This signal portion is shown in time domain in Fig. 3 with
thick line. In the same figure, the thin line and the dashed line cor-
respond to the upper envelope when it is constructed using natural
cubic splines or the polynomials optimized by the GA respectively.

2The fourth order that is adopted here is not restrictive, and the same
procedure could be realized with polynomials of higher or lower order.
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It is not hard to observe the difference in the behavior of the two
envelopes. The spline envelope often crosses the signal, whereas
the GA optimized envelope usually stays above it, and more impor-
tantly it tends to be tangential to the signal at the interpolation points
which are shown by stars. In other words, at least the first derivatives
of the envelope at the interpolation points coincide with these of the
multicomponent signal. The above observation brings directly to
mind Hermite piecewise polynomial interpolation [8] which allows
the determination of the value of derivatives at selected points.
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Fig. 4. Performance enhancement achieved with the use of Hermi-
tian instead of natural splines interpolation.

The performance improvement that can be achieved with the aid
of Hermitian interpolation is shown in Fig. 4. The first two error
bars show the relative error when 3rd order and 9th order spline in-
terpolation has been used. The third error bar corresponds to the
cubic Hermite interpolation with the first derivatives of the interpo-
lation polynomials at the interpolation points to be set equal to the
estimated first derivatives of the multicomponent signal. The fourth
error bar corresponds to the 5th order Hermite interpolation where
the derivatives higher than the first order are equal between the poly-
nomial pieces in a similar way to the natural splines way. In fact, the
improvement is even better as the order of interpolation increases.

The mean square error (MSE) performance3 in the extraction of
the highest frequency signal with respect to the number of sifting
iterations is depicted in figure 5 for the case of the signal shown
in Fig. 4. Sampling frequency issues are not taken into account
here [2] and the multicomponent signal has been sampled at least
50 times faster than the Nyquist frequency. In this figure, the 4 first
curves correspond to 3rd and 7th order natural spline interpolation
with local extrema (1), (2), 3rd and 7th order natural splines and de-
sired extrema (3), (4) and the rest of them correspond to Hermitian
interpolation. We observe that for the case of desired extrema, the
higher the order of the Hermitian interpolation the better the decom-
position performance is (see curves (7),(8)). However this trend is
not followed in the case of local extrema where the 3rd order Hermi-
tian interpolation performs better that the 7th order one. In general,

3 � � � � �� �
�

� 	 � 
 � 
 � 
 � � � 
 � 
 
 �
, with � the number of samples.
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Fig. 5. MSE between the actual and the estimated by EMD first
signal component w.r. to the number of sifting iterations.

Hermitian interpolation outperforms the spline interpolation in all
the cases examined.

5. CONCLUSION

In this paper, the empirical mode decomposition algorithm was in-
vestigated from a novel perspective, that of a genetic algorithm based
optimization. The approach facilitated a better understanding of the
method and offered significant information about the interpolation
points, the envelopes and their optimized settings in several simula-
tion examples. In this manner, a significant performance enhance-
ment of EMD has been achieved. Moreover, the findings regarding
the optimized interpolation points and envelopes will be useful in
developing a more thorough mathematic analysis of EMD.
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