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ABSTRACT

In this paper we propose new algorithms for 3D tensor de-

composition/factorization with many potential applications,

especially in multi-way Blind Source Separation (BSS), mul-

tidimensional data analysis, and sparse signal/image repre-

sentations. We derive and compare three classes of algo-

rithms: Multiplicative, Fixed-Point Alternating Least Squares

(FPALS) and Alternating Interior-Point Gradient (AIPG) al-

gorithms. Some of the proposed algorithms are characterized

by improved robustness, efficiency and convergence rates and

can be applied for various distributions of data and additive

noise.

Index Terms— Optimization, Learning systems, Linear

approximation, Signal representations, Feature extraction.

1. MODELS AND PROBLEM FORMULATION

Tensors (also known as n-way arrays or multidimensional ar-

rays) are used in a variety of applications ranging from neuro-

science and psychometrics to chemometrics [1, 2, 3, 4]. Non-

negative Matrix Factorization (NMF), Non-negative Tensor

Factorization (NTF) and parallel factor analysis PARAFAC

models with non-negativity constraints have been recently pro-

posed as sparse and quite efficient representations of signals,

images, or general data [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. From a

viewpoint of data analysis, NTF is very attractive because it

takes into account spacial and temporal correlations between

variables more accurately than 2D matrix factorizations, such

as NMF, and it usually provides sparse common factors or

hidden (latent) components with physiological meaning and

interpretation [4]. In most applications, especially in neuro-

science (EEG, fMRI), the standard NTF or PARAFAC mod-

els were used [8, 12, 13]. In this paper we consider more

general model referred to as a 3D NTF2 model (in analogy

to the Parafac2 model [4]) (see Fig. 1). A given tensor X ∈
R

I×T×K
+ is decomposed into a set of matrices S, D and

{A1,A2, ...,AK} with non-negative entries. Here and else-

where, R+ denotes the non-negative orthant with appropriate
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dimensions. The three-way NTF2 model can be described as

Xk = AkDkS + Ek, (k = 1, 2, . . . , K) (1)

where Xk = X :,:,k = [xitk]I×T ∈ R
I×T
+ are frontal slices

of X ∈ R
I×T×K
+ , K is the number of frontal slices, Ak =

[airk]I×R ∈ R
I×R
+ are the basis (mixing matrices), Dk ∈

R
R×R
+ is a diagonal matrix that holds the k-th row of the

D ∈ R
K×R
+ in its main diagonal, and S = [srt]R×T ∈

R
R×T
+ is a matrix representing sources (or hidden compo-

nents or common factors), and Ek = E:,:,k ∈ R
I×T is the

k-th frontal slice of a tensor E ∈ R
I×T×K representing error

or noise depending upon the application. The objective is to

estimate the set of matrices {Ak}, (1, . . . , k, . . . , K), D and

S, subject to some non-negativity constraints and other pos-

sible natural constraints such as sparseness and/or smooth-

ness. Since the diagonal matrices Dk are scaling matrices

they can usually be absorbed by the matrices Ak by introduc-

ing column-normalized matrices Ak := AkDk, so usually in

BSS applications the matrix S and the set of scaled matrices

A1, . . . ,AK need only to be estimated. However, in such a

case we may loose the uniqueness of the NTF representation

ignoring scaling and permutation ambiguities. The unique-

ness still can be achieved by imposing nonnegativity, sparsity

and other constraints. The above NTF2 model is similar to

the well known PARAFAC2 model with non-negativity con-

straints and Tucker models [2, 12, 4]. In the special case,

when all matrices Ak are identical, the NTF2 model can be

simplified to the ordinary PARAFAC model with the non-

negativity constraints described as Xk = ADkS +Ek, k =
1, . . . , K or equivalently xitk =

∑
r airsrtdkr +eitk or X =∑

r ar ⊗sT
r ⊗dr +E, where sr are rows of S and ar, dr are

columns of A and D, respectively, and ⊗ means outer prod-

uct of vectors [3]. Throughout this paper, we use the follow-

ing notation: the rt-th element of the matrix S is denoted by

srt, xitk = [Xk]it means the it-th element of the k-th frontal

slice Xk, Ā = [A1;A2; . . . ;AK ] ∈ R
KI×R
+ is a column-

wise unfolded matrix of the slices Ak, āpr = [Ā]pr. Sim-

ilarly, X̄ = [X1; X2; . . . ; XK ] ∈ R
KI×T
+ is the column-

wise unfolded matrix of the slices Xk, x̄pt = [X̄]pt.
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Fig. 1. (a) NTF2 model in which a 3D tensor is decomposed

into a set of non-negative matrices: {A1, . . . ,AK}, D, S.

(b) Equivalent representation in which frontal slices of a ten-

sor are factored by a set of matrices (tensor E representing

error is omitted for simplicity).

2. ALPHA AND BETA DIVERGENCES

To deal with the model (1) efficiently we adopt several ap-

proaches from constrained multi-criteria optimization, where

we minimize simultaneously several cost functions using al-

ternating switching between sets of parameters. The α and

β-divergences are two complimentary generalized cost func-

tions which can be applied for NMF and NTF [1, 6, 7, 8].

2.1. α-divergence

Let us consider a flexible and general class of the cost func-

tions, called α-divergence [1, 6]:

D
(α)
A (X̄||ĀS) =

∑
pt(x̄

α
pt[ĀS]1−α

pt − αx̄pt + (α − 1)[ĀS]pt)
α(α − 1)

D
(α)
Ak (Xk||AkS) =

∑
it

xα
itk[AkS]1−α

it

α(α − 1)
− xitk

α − 1
+

[AkS]it
α

We note that as special cases of α-divergence for α = 2, 0.5,−1,

we obtain the Pearson’s, Hellinger’s and Neyman’s chi-square

distances [6], respectively. Evaluating the limits for α → 1
and α → 0, one obtains the generalized Kullback-Leibler

(KL) divergence (I-divergence) and the dual generalized KL

divergence, respectively [6, 7, 8].

Instead of applying the standard gradient descent method,

we use the nonlinearly transformed gradient approach as gen-

eralization of the exponentiated gradient (EG) [7]:

Φ(airk) ← Φ(airk) − ηirk

∂D
(α)
Ak

(Xk||AkS)
∂Φ(airk)

, (2)

Φ(srt) ← Φ(srt) − ηrt
∂D

(α)
A (X̄||ĀS)
∂Φ(srt)

, (3)

where Φ(x) is a suitably chosen function.

It can be shown that such a nonlinear transformation pro-

vides a stable solution and the gradients are much better be-

haved in the space Φ. In our case, we employ Φ(x) = xα,

which leads directly to the new learning algorithm (for α �= 0)

(the rigorous proof of local convergence similar to this given

by Lee and Seung [11] is omitted due to a lack of space):

airk ← airk

(∑T
t=1 (xitk/[AkS]it)

α
srt∑T

t=1 srt

)1/α

, (4)

srt ← srt

(∑KI
p=1 āpr

(
x̄pt/[ĀS]pt

)α∑KI
p=1 āpr

)1/α

. (5)

2.2. β-divergence

Regularized β-divergence [14] for the NTF2 problem can be

defined as follows:

D(β)(X̄||ĀS) =
∑
pt

(x̄pt

x̄β
pt − [ĀS]βpt

β(β + 1)

+[ĀS]βpt

[ĀS]pt − x̄pt

β + 1
) + αS‖S‖L1, (6)

D
(β)
k (Xk||AkS) =

∑
it

(xitk
xβ

itk − [AkS]βit
β(β + 1)

+[AkS]βit
[AkS]it − xitk

β + 1
) + αAk

‖Ak‖L1, (7)

k = 1, . . . , K, t = 1, 2, . . . , T, i = 1, 2, . . . , I,

where αS and αAk
are small positive regularization parame-

ters which control the degree of sparseness of the matrices S
and Ak, respectively, and the L1-norms defined as ||S||L1 =∑

rt |srt| and ||Ak||L1 =
∑

ir |airk| are introduced to en-

force sparse representations of the solutions. It is interesting

to note that for β = 1, we obtain the squared Euclidean dis-

tances expressed by the Frobenius norms ‖Xk − AkS‖2
F ,

while for the singular cases, β = 0 and β = −1, the β-

divergence has to be defined as limiting cases as β → 0
and β → −1, respectively. When these limits are evaluated

one gets for β → 0 the generalized KL divergence, and for

β → −1 we obtain the Itakura-Saito distance. The choice of

the parameter β depends on the statistical distribution of the

data and the β-divergence corresponds to the Tweedie mod-

els [14]. For example, the optimal choice of the parameter

for the normal distribution is β = 1, for the γ-distribution
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is β → −1, for the Poisson distribution β → 0, and for

the compound Poisson β ∈ (−1, 0). By minimizing the β-

divergence, we have derived various kinds of NTF algorithms:

Multiplicative based on the standard gradient descent, Expo-

nentiated Gradient (EG), Projected Gradient (PG), Alternat-

ing Interior-Point Gradient (AIPG), or Fixed Point Alternat-

ing Least Squares (FPALS) algorithms. For example, in order

to derive a flexible multiplicative learning algorithm, we com-

pute the gradient of (6)-(7) with respect to elements of matri-

ces srt = sr(t) = [S]rt and airk = [Ak]ir and performing

simple mathematical manipulations we obtain the multiplica-

tive update rules:

airk ← airk
[
∑T

t=1(xitk/[AkS]1−β
it ) srt − αAk

]ε∑T
t=1[AkS]βit srt

,(8)

srt ← srt

[
∑KI

p=1 āpr (x̄itk/[ĀS]1−β
it ) − αS ]ε∑KI

p=1 āpr [ĀkS]βit
, (9)

where [x]ε = max{ε, x} with a small ε = 10−16 is intro-

duced in order to avoid zero and negative values.

In the special case for β = 1 we have derived a new al-

ternative algorithm, called regularized FPALS (Fixed Point

Alternating Least Squares) algorithm (see [8] for details)

Ak ←
[
(XkST − αAk

EA)(SST + γSE)+
]

ε
, (10)

S ←
[
(ĀT

Ā + γAE)+(ĀT
X̄ − αSES)

]
ε
, (11)

where γA, γS are small nonnegative regularization coefficients

(typically, decaying to zero during iteration process), A+ de-

notes Moore-Penrose pseudo-inverse of A and EA ∈ R
I×R,

ES ∈ R
R×T , E ∈ R

R×R are matrices with all entries one.

Furthermore, using the Alternating Interior-Point Gradi-

ent (AIPG) approach [15], another efficient algorithm has been

developed and implemented [8]:

Ak ← Ak − ηAk
P Ak

, (12)

S ← S − ηSP S , (13)

where P Ak
=

(
Ak � (AkSST )

)
	

(
(AkS − Xk)ST

)
,

P S =
(
S � (ĀT

ĀS)
)
	

(
Ā

T (ĀS − X̄)
)

and signs 	 and

� mean component-wise multiplication and division, respec-

tively. The learning rates ηAk
and ηS are selected in this way

to ensure the steepest descent, and on the other hand, to main-

tain non-negativity. Thus, ηS = min{τ η̂S , η∗
S} and ηAk

=
min{τ η̂Ak

, η∗
Ak

}, where τ ∈ (0, 1), η̂S = {η : S − ηP S}
and η̂Ak

= {η : Ak − ηP Ak
} ensure non-negativity, and

η∗
Ak

=
vec(P Ak

)T vec(AkSST − XkST )
vec(P Ak

S)T vec(P Ak
S)

, (14)

η∗
S =

vec(P S)T vec(ĀT
ĀS − Ā

T
X̄)

vec(AkP S)T vec(AkP S)
(15)

are the adaptive steepest descent learning rates.

3. SIMULATION RESULTS

All the NMF algorithms discussed in this paper have been ex-

tensively tested for many difficult benchmarks for signals and

images with various statistical distributions and also for real

EEG data. We found the best performance can be obtained

with the AIPG, FPALS and the algorithm (8)-(9) for β = 1.

Due to space limitation, we present here only one sim-

ulation example. Nine natural highly correlated images are

mixed by a randomly generated 3D tensor A ∈ R
18×9×10
+ .

The observed mixed data are collected in 3D tensor X ∈
R

18×2562×10
+ . The exemplary results are shown in Fig.2.

(a) (b)

Fig. 2. Example: (a) 9 original source images; (b) estimated

source images using FPALS algorithm (SIR = 32.9, 10.1, 45,

18.8, 28.2, 24.5, 42.2, 37.8, 27.1 [dB], respectively).

Table 1. Mean SIRs in [dB] obtained from 100 MC samples

for estimation of the columns in the tensor A ∈ R
I×R×K and

the rows (sources) in S ∈ R
R×T for the selected algorithms.

The right column presents the elapsed times [in seconds] for

a simple MC sample. In the experiments, the spectra signals

are used.

ALGORITHMS: A S Times [s]

Alpha Alg. (4) – (5): α = 0.5 21 17.9 31.7

Beta Alg. (8) – (9): β = 1 20.8 17.8 7.6

AIPG (12) – (15) 27.2 25 4.7

FPALS (10) – (11) 24.5 23.3 1.8

4. CONCLUSIONS AND DISCUSSION

In this paper we proposed generalized and flexible cost func-

tions (controlled by a single parameter α or β) that allows

us to derive a family of robust and efficient NTF algorithms.
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The optimal choice of a free parameter in a specific cost func-

tion depends on a statistical distribution of data and additive

noise, thus various criteria and algorithms (updating rules)

should be applied for estimating the basis matrices Ak and

the source matrix S, depending on a priori knowledge about

the statistics of noise or errors. It is worth mentioning that we

can use three different strategies to estimate common factors

(the source matrix S). In the first approach, presented in this

paper, we use two different cost functions: a global cost func-

tion (using unfolded column-wise matrices: X̄, Ā for frontal

slices of 3D tensors) to estimate the common factors S, i.e.,

the source matrix S; and local cost functions to estimate the

slices Ak, (k = 1, 2, ..., K). However, instead of using the

unfolded matrices for the NTF2 model to estimate S, we can

use the averaged matrices defined as X̂ =
∑

k Xk ∈ R
I×T

and Â =
∑

k Ak ∈ R
I×R. Furthermore, it is also possi-

ble to apply a different approach by using only a set of local

cost functions, e.g., Dk(Xk||AkS) = 0.5||Xk − AkS||2F .

In such a case, we estimate Ak and S cyclically by apply-

ing alternating minimization (similar to row-action projection

of the Kaczmarz algorithm). We found that such approaches

also work quite well for the NTF2 model. The advantage of

the last approach is that all the update learning rules are local

(slice by slice) and algorithms are generally faster for large

data, (especially, if K >> 1).

Obviously, 3D NTF models can be transformed to a 2D

non-negative matrix factorization (NMF) problem by unfold-

ing (matricizing) tensors. However, it should be noted that

such a 2D model is not exactly equivalent to the NMF2 model,

since in practice we often need to impose different additional

constraints for each slice. In other words, the NTF2 model

should not be considered as equal to a standard 2-way NMF

of a single unfolded 2-D matrix. The profiles of the stacked

(column-wise unfolded) Ā are often not treated as single pro-

files and the constraints are usually applied independently to

each Ak sub-matrix that form the stacked Ā. We have been

motivated to develop the proposed NTF algorithms for use in

three areas of data analysis (especially, EEG data) and sig-

nal/image processing: (i) multi-way blind source separation,

(ii) model reduction and selection, and (iii) sparse image cod-

ing. The proposed models can be further extended by impos-

ing additional, natural constraints such as smoothness, conti-

nuity, closure, unimodality, local rank, selectivity, and/or by

taking into account a prior knowledge about specific 3D, or

more generally, multi-way data. Obviously, there are many

challenging open issues remaining, such as global conver-

gence, optimal choice of parameters and uniqueness of a so-

lution when additional constraints are imposed.
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