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ABSTRACT

We consider uncertainty reduction in least square problems
raised in system identi cation with unknown state space. We
assume existence of some prior information obtained through
a nite series of measurements. This data is modeled in the
form of a nite collection of quadratic constraints enclosing
the state space. A simple closed form expression is derived
for the optimal solution featuring geometric insights and intu-
itions that reveal a two-fold effort in reducing uncertainty: by
correcting the observation error and by improving the condi-
tion number of the data matrix. To deal with the dual problem
of nding the optimal Lagrange multipliers, we introduce an
approximate, positive semide nite program that can be easily
solved using the standard numerical techniques.

Index Terms— Identi cation, least squares methods, lin-
ear systems, uncertainty, and regularization.

1. INTRODUCTION

Least square problems arise in many applications in signal
processing and control including linear system identi cation.
The common ingredients in these problems are a domainX ⊂
R

n which is a compact set denoting the state space, a range
Y = R

m denoting the observation space, and a linear map-
ping A : X → Y denoting the data matrix. In many practical
scenarios, the state space X is either unknown or its descrip-
tion is very dif cult. The problem is posed as there is an un-
known underlying element x∗ ∈ X , whose image Ax∗ ∈ Y
under the operation of an input data matrixA is available sub-
ject to some additive noise in the form b = Ax∗ + v. The ob-
jective is to use the given knowledge on A and b and to nd a
good estimate for x∗. A basic approach is to assumeX = R

m

and solve
inf
x∈X

‖Ax− b‖2 (1)

that results to the least square solution
xLS = A+b, (2)

where A+ denotes the pseudoinverse of A. This solution,
however, could harbor a high degree of uncertainty, depend-
ing on the amount of observation noise in b and a potential

rank de cient or ill-conditioned data matrix A. More specif-
ically, if we assume ‖Ax∗ − b‖ ≤ δ, for some δ > 0, and
assuming that A =

∑n
i=1 σiuiv

′
i denotes the singular value

decomposition (SVD) of A, the uncertainty in any direction
vi of the least square solution would be smaller than or equal
to δ

σi
that could be quite large for small singular values, even

for very small δ > 0. A comprehensive error analysis for least
square problems can be found in [1], [2].
To reduce the uncertainty, some information onX or some

additional required features needs to be incorporated in the
search for solution. This is the essence of many regulariza-
tion techniques like Tikhonov regularization and constrained
optimization [1], [2], [3]. In the latter one, in particular, (1) is
modi ed to

inf
x∈Xη

‖Ax− b‖2, (3)

for some compact constraint set Xη such that X ⊆ Xη whose
tightness is controlled by some parameter η ≥ 0. The key
is how to use the prior knowledge and de ne a good Xη .
From an information perspective, i.e., reducing uncertainty,
Xη should be tight and comprehensive. From a computational
point of view, it should be simple and concise, as membership
veri cation for some sets could be NP-hard. This has been
the general theme of much work in the literature including
set theoretic estimation [4] and set membership identi cation
[5]. In the tradeoff between these two requirements, a basic
geometrical shape that is commonly used often is ellipsoid.
In this paper, we model the prior information in the form

of a nite collection of ellipsoids that enclose the unknown
state space. While there has been a decent amount of work on
recursive numerical solutions for such problems, also known
as quadratic programs with quadratic constraints (QPQC) [3],
solving these problems through derivation of an analytical
formula has not attracted much attention as it requires solv-
ing for Lagrange multipliers through a nonlinear program.
This, in particular, becomes more challenging as the number
of constraining ellipsoids increases. In fact, some existing
work that somehow simpli es this problem is through the as-
sumption that there are uncountable constraining ellipsoids in
any directions within a bounded variation [6]. This essentially
creates a spherical cross section among all ellipsoids and sim-
pli es the problem into a single spherical constraint.
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In this paper, we take an analytical approach for the reg-
ularization of least square problems with a nite number of
ellipsoids. For this purpose, we extend the dimension of the
state space by one to deal with a collection of concentric el-
lipsoids. This helps to provide important geometrical insights
and intuitions as well as derivation of a simple, closed form
expression for the optimal solution. The obtained solution
reveals a two-fold effort in dealing with uncertainty by cor-
recting the observation error and by improving the condition
number of the data matrix. The other advantage of this ex-
tension is yielding to a dual problem with simple nonlinear
expression that with some manipulation is converted into an
approximate, positive semide nite program that can be easily
solved. The approximate dual program is quite insightful and
intuitive that helps to simplify the problem even more prior to
obtaining the numerical solution.

2. SETUP AND PROBLEM FORMULATION

Since the states in a physical system have bounded energy,
we may assume that X is a compact, convex space contained
in the unit ball. We assume that there is a calibration phase
comprising a nite number of steps where at each step the
system changes its state and after each change, we can send
certain signals into the system and observe the noisy response
of the system to these signals. After each step, indexed by θ,
we form the input signal into a (Toeplitz) matrix Aθ and the
output signal into a vector bθ. Hence, at the end of calibration,
after a suf cient number of steps, we obtain a nite collection
{(Aθ, bθ)}θ∈Θ of observations. Note that the number of rows
in individual Aθ’s could be different as the time duration of
each step could be different.
For a suf ciently large η > 0, we have X ⊆ Xη where

Xη = {x ∈ R
n : sup

θ∈Θ
‖Aθx− bθ‖ ≤ η}. (4)

Provided that there are a suf cient number of steps during
the calibration phase and η is chosen small enough, then the
expression in (4) could be a very tight approximation for X .
To emphasize that X is contained in the unit ball, we de ne
an auxiliary matrix Aθ0

= ηIn and bθ0
= 0 and add it to the

collection, i.e., Θ = Θ ∪ {θ0}.
Now, the objective is to solve the least square problem

(1) subject to (4). A numerical solution can be derived us-
ing standard numerical techniques in the context of QPQC,
e.g., interior-point methods [3]. However, the approach of
this work is an analytical one as discussed in the following.

2.1. Extension of the State Space to a Higher Dimension

Associated with each constraint ‖Aθx− bθ‖, we form a posi-
tive semide nite matrix Ã′θÃθ , where Ãθ = [Aθ − bθ] is an
extended matrix formed by concatenation of −bθ to Aθ . Let
x̃ = [x, w] ∈ R

n+1 where w is a real value. For every θ ∈ Θ

x

w

θ1

θ2
θ0

√
η2+2ε
η2+ε

√
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Fig. 1: Representation of the subjective constraints in a higher
dimension using concentric ellipsoids.

and ε ≥ 0, let
D̃θ,ε = Ã′θÃθ + εI, (5)

and
X̃η,ε = {x̃ ∈ R

n+1 : sup
θ∈Θ

x̃′D̃θ,εx̃ ≤ η2 + 2ε}.

Here, ε is a relaxation parameter added to avoid technical dif-
culties that rise due to possible rank de ciencies of Ã′θÃθ .
The subset X̃η,ε ⊂ R

n+1 is called an extended enclosing set
associated with Θ, η, and relaxation parameter ε. Figure 1
illustrates a two dimensional example showing the extended
enclosing set at the intersection of a collection of three con-
centric ellipsoids characterized. Let Xη,ε denote the projec-
tion of the intersection of X̃η,ε and the hyperplanew = 1 onto
R

n, as shown in Figure 1. It can be veri ed that X ⊆ Xη,ε

for all ε > 0, and Xη,ε1
⊆ Xη,ε2

, if ε1 ≤ ε2.
From Figure 1, it appears that the auxiliary restriction in-

dexed by θ0 is not active at all. In fact, for every given pair
θ1 and θ2 if Ã′θ1

Ãθ1
− Ã′θ2

Ãθ2
is positive semide nite, then

constraint θ2 is majorized by θ1, i.e.,
∀x : ‖Aθ2

x− bθ2
‖ ≤ ‖Aθ1

x− bθ1
‖.

This is equivalent to say the ellipsoid indexed by θ1 is con-
tained in θ2 for all ε ≥ 0, and hence the constraint indexed
by θ2 is completely inactive and it can be removed from the
set of constraints speci ed by {(Aθ, bθ)}Θ. This could reduce
the number of constraints and simpli es the problem.

3. ANALYTICAL EXPRESSION FOR SOLUTION

In this section, we formulate an optimization problem using
the extended formulation that was introduced in the previous
part. Let Ã = [A −b] and C̃ε = Ã′Ã+εI . Let en+1 ∈ R

n+1

denote the unit vector whose rst n elements are zero. The
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Fig. 2: Comparing (a) least square solution and (b) regularized solution along with the contours of the subjective constraints.

optimization problem in the extended setting is
inf
x̃

x̃′C̃εx̃,

s.t. sup
θ∈Θ

x̃′D̃θ,εx̃ ≤ η + 2ε, and

1− e′n+1x̃ ≤ 0. (6)
That is instead of solving the least square problem (1) subject
to (4), we solve (6) whose solution is given in the following
result that is proved based on the strong duality [3].

Theorem 3.1. The optimal solution of (6) is

x̃o
ε =

(C̃ε + λoD̃
o
ε)
−1en+1

e′n+1(C̃ε + λoD̃o
ε)
−1en+1

(7)

where λo and D̃o
ε are the optimal solutions of

sup
λ≥0,D̃ε∈D̃Θ,ε

1

e′n+1(C̃ε + λD̃ε)−1en+1

− λη2, (8)

and D̃Θ,ε denotes the convex hull1 of {D̃θ,ε}θ∈Θ.

In other words, Theorem 3.1 states that there exist a ma-
trix D̃o

ε formed by a ceratin convex combination of the ele-
ments of {D̃θ,ε}Θ and a certain scalar λo that de ne (7) as
the optimal solution for (6). Expression (7) is a simple an-
alytical expression for the optimal solution that relies on the
solution of a nonlinear dual problem posed by (8). In Subsec-
tion 3.2, we will approximate the dual problem with a linear,
positive semide nite program that can be solved more easily.
The optimal extended solution expressed in (7) de nes an

optimal solution xo
ε through its rst n elements. Let

D̃o
ε =

[
Do

ε −do

−do′ eo
ε

]
(9)

denote the block decomposition of D̃o
ε where Do

ε , do, and
eo

ε belong to convex hulls of {A′θAθ}Θ + εI , {A′θbθ}Θ, and
1The convex hull of a set of elements is a set containing all possible con-

vex combinations of its elements.

{b′θbθ}Θ+ε, respectively, with the same optimal convex com-
bination weights. Then

xo
ε = (A′A + εI + λoD

o
ε)
−1(A′b + λod

o) (10)
de nes a regularized least square solution with relaxation ε.
For certain problems, xo

ε has a continuous bounded behavior
with respect to ε. Thus, in those problems, we would have
xo = limε→0 xo

ε as non-relaxed, regularized least square so-
lution.
Analyzing (10), it turns out there is a two-fold effort on

how the constraints combat with the uncertainty. While the
term λoD

o
ε that added to A′A aims to increase the singular

value, an error correction term, λod
o, is added to A′b to re-

duce the observation error.

3.1. An example

Consider a one dimensional problem, where we would like to
solve inf |ax − b| for ab < 0 subject to |aθi

x − bθi
| ≤ η for

i = 0, 1, 2, where aθ0
= η, bθ0

= 0, aθ1
bθ1

> 0, aθ2
bθ2

> 0.
Figure 2(b) depicts the contours of the extended constraining
ellipsoids speci ed by (6) along with a contour of extended
objective function. The optimal solution x̃o

ε characterized by
Theorem 3.1 is shown by a solid arrow in the intersection of
the ellipsoid indexed by θ1 and the line w = 1. The cor-
responding solution xo

ε is shown as projection of x̃o on the
x-axis. Since θ0 and θ2 are not active constraints, we have

xo
ε =

aθ1
bθ1
−

√
(a2

θ1
+ ε)(η2 + ε)− b2

θ1
ε

a2
θ1

+ ε
. (11)

By continuity with respect to ε, we obtain

xo = lim
ε→0

xo
ε =

bθ1
− η

aθ1

. (12)

In contrast, in Figure 2(a), a modi ed least square scenario
is depicted where (6) is solved without considering the el-
lipsoidal constraints. In this case, we obtain a least square
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solution with ε relaxation xε,LS = ab
a2+ε

, where by continuity
xLS = limε xε,LS = b

a
. One can compare the contours corre-

sponding to constraint θ1 in Figure 2 and notice that there is
quite a large amount of error shown in constraint θ1 for xε,LS.
This indicates that for the choice of least square solution the
maximumamount of error occurs for the ellipsoidal constraint
that has its maximum singular vector aligned with the mini-
mum singular vector of the objective function. In other words,
in the optimal solution, we can expect to have more contribu-
tion from those constraints, Ã′θAθ , whose larger singular val-
ues are aligned with smaller singular values of the objective
function Ã′A.

3.2. Approximating the Dual Problem

With some straightforwardmanipulation, we rephrase the dual
problem (8) as

sup t s. t.

e′n+1

[
I − (λη2 + t)(C̃ε + λD̃ε)

−1
]
en+1 ≥ 0, (13)

where t is a real valued slack variable. This problem, how-
ever, is still a non-linear optimization problem. Although, a
numerical solution of (13) would determine D̃o

ε and λo, to
provide intuitive arguments and simplify the problem, we re-
place (13) with an optimization with stricter conditions as

sup t s. t. C̃ε + λD̃ε − (λη2 + t)I � 0. (14)
The problem posed in (14) is a linear, positive semide nite
program (SDP) that can be easily solved using numerical tech-
niques known for these programs [3]. Thus, we focus on im-
plications and insights that can be obtained from (14). For
this purpose, we expand (14) by substituting for D̃ε and C̃ε

using a set of nonnegative real values {λi}
|Θ|
i=1 (λ =

∑
λi) to

obtain∑
i

λi

(
Ã′θi

Ãθi
− (η2 − ε)I

)
� (t− ε)I − Ã′Ã. (15)

From (15), it turns out that for certain choices of η and ε, in
particular for suf ciently small η, there could exist some θi

such that Ã′θi
Ãθi

� (η2 − ε)I . Hence, the corresponding λi

could grow unbounded implying that t would be in nite. In
this case, an optimal solution for (14) would be trivial. One
can simply pick D̃o

ε = Ã′θi
Ãθi

+ εI and λo a very large value
obtaining

xo
ε ≈ (D̃o

ε)−1do.

This basically means that if (4) is inappropriately very tight,
then the solution would suffer from a large approximation er-
ror. In the other extreme, if the choice of η and ε are such
that (η2 − ε)I completely dominates every D̃ε, then λ needs
to be very small. As a result, asymptotically as η → ∞, the
constraining set (4) becomes very loose and xo → xLS.
Unlike these extreme cases, for appropriate choices of η,

the solution of (14) is not trivial and one needs to solve the lin-
ear, positive semide nite program posed in (14) to nd t and

λi’s. However, it can be intuitively argued that the weight-
ing selection of θi’s should emphasize more on those Ã′θi

Ãθi

that have their larger singular values aligned with smaller sin-
gular values of Ã′Ã, which is in complete agreement of our
observation and inference from Figure 2.
Although, the complexity of this problem could poten-

tially grow by |Θ|, the problem can be simpli ed by the no-
tion of majorization mentioned in Section 2.1 as well as the
Caratheodory’s Theorem [7] stating that any point in D̃Θ,ε

can be written as a convex combination of a maximum

min(
(m + 1)n

2
�+ 1, |Θ|)

number of linearly independent vertices of {D̃θ,ε}Θ. That
is there exists an optimal setting of λi’s that has at most the
minimum of |Θ| and  (m+1)n

2 �+ 1 nonzero elements.

4. CONCLUSION

In this work, we considered the problem of regularizing least
square optimization using prior information that is modeled
as a nite number of quadratic constraints. The problem was
extended to a higher dimensional space that led to the deriva-
tion of a simple, closed form expression for the regularized
solution. The solution is expressed in terms of Lagrange mul-
tipliers whose solutions are obtained through a nonlinear dual
problem. To simplify the search for Lagrange multipliers, the
dual problem is approximated with a linear, positive semi-
de nite program that can be easily solvable through standard
techniques. The approximation problem provides important
insights that are in full agreement with prior observations and
intuitions. Further insights and rigorous accuracy assessment
of the approximation problem remain to future work.
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