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ABSTRACT

In this paper, a new ef cient iterative algorithm for approximate joint
diagonalization of positive-de nite Hermitian matrices is presented.
The proposed algorithm, named as SVDJD, estimates the diagonal-
ization matrix by iterative optimization of a maximum likelihood
based objective function. The columns of the diagonalization matrix
is not assumed to be orthogonal, and they are estimated separately
by using iterative singular value decompositions of a weighted sum
of the matrices to be diagonalized. The performance of the proposed
SVDJD algorithm is evaluated and compared to other existing state-
of-the-art algorithms for approximate joint diagonalization. The re-
sults imply that the SVDJD algorithm is computationally ef cient
with performance similar to state-of-the-art algorithms for approxi-
mate joint diagonalization.

Index Terms— Joint diagonalization, BSS, SVD

1. INTRODUCTION

Consider a setR ofM positive-de nite, HermitianmatricesR1, . . . ,

RM ∈ C
K×K . The set R is said to be simultaneously diagonaliz-

able if there exists a nonsingular matrixB ∈ C
K×K andM congru-

ent diagonal matricesΛ1, . . . ,ΛM ∈ R
K×K , such that

BRmB
H = Λm, m = 1, . . . ,M. (1)

In practice, the set R is usually unknown and it is estimated from
a nite sample size. Due to estimation errors, the estimate of R,
denoted by R̂ = {R̂m}

M

m=1, is perturbed and exact joint diag-
onalization of R may not be achievable. Hence, the problem of
approximate joint diagonalization seeks for a matrix B such that
{BR̂mB

H}Mm=1 are “as diagonal as possible” in a sense that a mea-
sure of deviation from diagonality of {BR̂mB

H}Mm=1 is minimized
w.r.t. B.

A variety of algorithms for approximate joint diagonalization
have been proposed in the literature [1]-[7]. Many blind source sep-
aration (BSS) techniques utilize approximate joint diagonalization
algorithms [8]-[12]. According to these techniques, a set of unknown
matrices, which obey exact joint diagonalization, is estimated from
the observed data. A diagonalization matrix B, which is usually
the separation matrix, is estimated (up to scaling and permutation
of columns) by minimizing an objective function that measures the
deviation of {BR̂mB

H}Mm=1 from diagonality.
In this paper, a new ef cient iterative algorithm for approximate

joint diagonalization of positive-de nite Hermitian matrices, named
as SVDJD, is proposed. The positive-de nite assumption is moti-
vated by the fact that in many applications [10], [11], the setR con-
sists of covariance matrices of some random variables. According to

the proposed algorithm, a diagonalization matrixB, whose columns
are not constrained to be orthogonal, is estimated by optimization of
a maximum likelihood (ML) based objective function, used also by
Pham [3]. The columns ofB are estimated separately using iterative
singular value decompositions (SVD) of a weighted sum of the ma-
trices to be diagonalized. This property enables low computational
load of orderO(MK+K4) per iteration, which is useful especially
in cases of large amount of matrices.

2. MAXIMUM LIKELIHOOD BASED OBJECTIVE
FUNCTION

In this section, an ML-based objective function for estimation of the
diagonalization matrix B is derived under the following measure-
ments model. Let Xm =

h
x

(m)
1 , . . . ,x

(m)
Nm

i
, m = 1, . . . ,M de-

noteM statistically independent populations of K-variate complex
random vectors, where x

(m)
n and Nm denote the nth vector and the

sample size of themth population, respectively. In each population,
the vectors x(m)

n , n = 1, . . . , Nm, m = 1, . . . ,M are independent
and x ∼ Nc(η

m
,Rm), where Nc denotes the circular complex

Gaussian distribution, {η
m
}Mm=1, denotes the mean vectors and the

setR = {Rm}
M

m=1 denotes a simultaneously diagonalizable family
of complex covariance matrices such that (1) is satis ed. Assuming
that η

m
= 0, m = 1, . . . ,M , the ML estimate of Rm is given by

R̂m = 1
Nm

XmX
H

m.
Since {Xm}

M

m=1 are statistically independent, {R̂m}
M

m=1 are
also statistically independent and therefore, their joint log-likelihood
function is given by

L(R1, . . . ,RM ) = −Nm

MX
m=1

“
log |Rm|+ tr

“
R
−1
m R̂m

””
+const.

(2)
Since the setR is a simultaneously diagonalizable family, then using
(1), the joint log-likelihood of B,Λ1, . . . ,ΛM , after normalization
and dropping the constant term, is

Q(B,Λ1, . . . ,ΛM ) =
MX
m=1

wm

“
tr

“
B
H
Λ
−1
m BR̂m

”
−

log |BH
Λ
−1
m B|

”
(3)

where wm = Nm

N
and N =

P
M

m=1Nm denotes the total sample
size. It can be shown that

Q(B,Λ1, . . . ,ΛM ) =
MX
m=1

wmKLnorm

“
BR̂mB

H |Λm

”
(4)
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where KLnorm (Σ1|Σ2) denotes the Kullback-Leibler divergence
between two zero-mean K-variate circular complex normal densi-
ties with covariance matrices Σ1 and Σ2. The Pythagorean property
of the Kullback-Leibler divergence [13] implies that (4) can be de-
composed as

Q(B,Λ1, . . . ,ΛM ) =
P
M

m=1 wmh
KLnorm

“
BR̂mB

H |diag(BR̂mB
H)

”

+ KLnorm

“
diag(BR̂mB

H)|Λm

”i

(5)
where diag(·) denotes a diagonal matrix with the same diagonal el-
ements of its argument. Thus, the objective function in (5) is mini-
mized for a xed value of B when Λm = diag(BR̂mB

H) and the
attained minimum is

Q
∗(B) =

MX
m=1

wm

h
KLnorm

“
BR̂mB

H |diag(BR̂mB
H)

”i
.

(6)
Therefore, we conclude that the normalized log-likelihood of B,
Λ1, . . . ,ΛM given R̂ , leads to an objective function, which mea-
sures the deviation of {BR̂mB

H}Mm=1 from diagonality. It can be
shown that the objective function in (6) can be expressed as

Q
∗(B) =

MX
m=1

wm

h
log

˛̨
˛diag(BR̂mB

H)
˛̨
˛− log

˛̨
˛BR̂mB

H

˛̨
˛
i
.

(7)
We note that the same ML-based objective function was ob-

tained in [10] and [11], in the context of blind separation of sta-
tistically independent mixed sources for nonstationary and Gaussian
mixture model distributed sources, respectively.

3. MINIMIZATION ALGORITHM

In this section, an iterative algorithm for minimization of (7) w.r.t.
B is derived. Direct minimization of (7) w.r.t. B is analytically
cumbersome. Therefore, B is decomposed into B = B̆Ŵ, where
Ŵ is a whitening matrix of R̂ =

P
M

m=1 wmR̂m, and

Q
∗(B̆) =

MX
m=1

wm

h
log

˛̨
˛diag(B̆(ŴR̂mŴ

H)B̆H)
˛̨
˛−

log
˛̨
˛(B̆(ŴR̂mŴ

H)B̆H)
˛̨
˛
i

(8)

is minimized w.r.t. B̆. Since Ŵ and R̂m are independent of B̆ (8)
can be reduced to the following form

Q
′(B̆) =

MX
m=1

wm

h
log

˛̨
˛diag(B̆(ŴR̂mŴ

H)B̆H)
˛̨
˛− log

˛̨
˛B̆B̆

H

˛̨
˛
i
.

(9)
In [14], it is shown that since Ŵ is a whitening matrix of R̂, then B̆

is approximately unitary and thus

Q
′(B̆) ≈

MX
m=1

wm

h
log

˛̨
˛diag(B̆(ŴR̂mŴ

H)B̆H)
˛̨
˛−

log
˛̨
˛diag(B̆B̆

H)
˛̨
˛
i

= Q
′′(B̆). (10)

Let B̆ =
h
b̆1, . . . , b̆K

i
, then (10) can be expressed as

Q
′′(B̆) =

MX
m=1

wm

KX
k=1

log
“
b̃
H

k ŴR̂mŴ
H
b̃k

”
, (11)

where b̃k = b̆k

‖b̆k‖
2

and
‚‚‚b̃k

‚‚‚
2

= 1 ∀k = 1, . . . , K. Let R̆ �
=

ŴR̂mŴ
H , then the objective function becomes

Q
′′′(B̃) =

MX
m=1

KX
k=1

h
log

“
b̃
H

k R̆b̃k

”
− λk

“
b̃
H

k b̃k − 1
”i
, (12)

where {λk}Kk=1 are the Lagrange multipliers. Minimization of Q′′′

w.r.t. B̃ causes a scaled estimation of B. In BSS applications this
inherent limitation is well known and usually tolerable. Equating the
partial derivatives of Q′′′ w.r.t. {b̃Hk }Kk=1 to zero yields

MX
m=1

wm

“
b̃
H

k R̆mb̃k

”−1

R̆mb̃k = λkb̃k. (13)

Left multiplication of (13) by b̃
H

k , and using the unity norm con-
straint on b̃k, we obtain λk = 1, ∀k = 1, . . . ,K. Therefore, (13)
can be rewritten in the form

G(b̃k)b̃k = b̃k, (14)

where G(b̃k)
�
=

P
M

m=1 wm

“
b̃
H

k R̆mb̃k

”−1

R̆m is a Hermitian
matrix. Direct solution of (14) is analytically cumbersome. There-
fore, an iterative algorithm which minimizes the L2 norm of the dif-
ference between the l.h.s and r.h.s of (14) w.r.t. b̃k , is derived. The
L2 norm ofG(b̃k)b̃k − b̃k is

ξ(b̃k) = b̃
H

k

“
G(b̃k)− I

”2

b̃k. (15)

In order to enforce unit L2 norm on b̃k, the following expression is
minimized w.r.t. b̃k, and αk, k = 1, . . . , K

ξ
′(b̃k, αk) = b̃

H

k

“
G(b̃k)− I

”2

b̃k − αk
“
b̃
H

k b̃k − 1
”

(16)

where αk is the Lagrange multiplier. Let b̃∗k be de ned as

b̃
∗

k = arg min
b̃k

ξ
′(b̃k, αk). (17)

The direct minimization in (17) is analytically cumbersome. There-
fore, Minimization of (16) w.r.t. b̃k is carried out by iterative mini-
mization of the following auxiliary function

ψ(b̃k, b̃
∗

k, αk) = b̃
H

k

“
G(b̃∗k)− I

”2

b̃k − αk
“
b̃
H

k b̃k − 1
”
.

(18)
The matrixG(b̃∗k) is the zero-order Taylor approximation ofG(b̃k)

around b̃
∗

k. Note that (18) is tangent to (16) when b̃k = b̃
∗

k and
therefore, share the same global minimum. Since b̃

∗

k is unknown,
b̃
∗

k = b̃
old

k is initially guessed and

b̃
new

k = arg min
b̃k

min
αk

ψ(b̃k, b̃
∗

k, αk). (19)

is obtained. This process is iterated until convergence, where b̃oldk of
the next iteration is b̃newk of the current one. In each iteration, min-
imization of ψ(b̃k, b̃

∗

k, αk) is carried out by equating its derivative
w.r.t. b̃k to zero. Hence, the following equation is solved

“
G(b̃oldk )− I

”2

b̃
new

k = αkb̃
new

k . (20)

According to (19) and (20), b̃newk is the eigenvector of
“
G(b̃oldk )− I

”2

,
corresponding to the minimal eigenvalue, αk.

Finally, the iterative algorithm for the estimation of b̃k, named
as SVDJD comprises the following steps:
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1. Set k = 1.
2. Let l = 1. Initialize b̃(0)

k
.

3. Solve
“
G(b̃

(l−1)
k

)− I

”2

b̃
(l)
k

= α
(l)
k

b̃
(l)
k
and pick b̃

(l)
k
, cor-

responding to the minimal eigenvalue, α(l)
k
.

4. If α(l)
k
> ε, then l = l + 1 and go to step 3.

5. If α(l)
k
≤ ε, then if k < K, then k = k + 1 and go to step

2, else stop.

Convergence and ef cient initialization of this algorithm are dis-
cussed in detail in [14].

In order to examine the typical averaged convergence patterns
of ξ(b̃(l)

k
), a data set with 1000 random realizations of the complex

three-dimensional matrix set
˘
AΛmA

H + σ2
EmE

H

m

¯M
m=1

was gen-
erated. The elements of the matrix A are drawn from a complex
standard normal distribution and the matrices {Λm}

M

m=1 are real di-
agonal with elements uniformly distributed in (0, 1]. The matrices
{Em}

M

m=1 are perturbation matrices, randomized from a complex
normal standard distribution and the scalar σ2 was set to 0.01. The
number of matrices, M , was set to 25 and the matrices weights,
{wm}

M

m=1, were equally set to 1
M
. Fig. 1 depicts the average values

of log
“
ξ(b̃

(l)
k

)
”
for k = 1, 2, 3, as a function of the iteration in-

dex l. One can notice that the typical averaged convergence pattern
is exponential and that the algorithm converges after approximately
20-25 iterations in each dimension.

0 5 10 15 20 25 30 35 40

36

34

32

30

28

26

24

log
ξ  k (l)

Iteration index (l)

k = 1
k = 2
k = 3

Fig. 1. Typical averaged convergence patterns of the minimization
algorithm.

4. COMPUTATIONAL COMPLEXITY

In this section, an asymptotic computational load analysis of the pro-
posed algorithm is presented and compared to other existing state-
of-the-art techniques for approximate joint diagonalization. Accord-
ing to the minimization algorithm described in Section 3, for each
dimension, denoted by k (k = 1, . . . ,K), in each iteration, the

matrix
“
G(b̃k)− I

”2

is calculated and its eigenvectors and eigen-
values are computed using SVD. The computational load of calcu-
lating

“
G(b̃k)− I

”2

is of order O(M), and according to [15], the
computational load of the SVD algorithm is O(K3). Therefore, as-
suming identical number of iterations per dimension, the asymptotic
computational load of the algorithm per iteration isO(MK +K4).

The computational loads per iteration of the proposed method
and of other existing techniques for approximate joint diagonaliza-
tion, like Pham’s algorithm [3], the AC/DC [5] and FFDIAG [7]

algorithms are presented in Table 1. Observing Table 1, one can no-
tice that the SVDJD is computationally the most ef cient algorithm
in comparison to Pham’s, AC/DC and FFDIAG algorithms, when-
everM > K

3

K−1
. This case may be encountered, for example, when

K = 5 andM = 100.

Table 1. Asymptotic computational load per iteration of the SVDJD,
Pham’s, AC/DC, and FFDIAG

Algorithm Computational load
SVDJD O(MK +K4)
PHAM O(MK2)
AC/DC O(MK3)
FFDIAG O(MK2)

5. SIMULATION RESULTS

In this section, the performance of the SVDJD algorithm is com-
pared with state-of-the-art algorithms for approximate joint diago-
nalization, like Pham’s [3], AC/DC [5] and the FFDIAG algorithm
[7]. The rst trial evaluates the performance of the SVDJD algo-
rithm in a scenario of orthogonal joint diagonalization problem. The
second trial evaluates the performance of the proposed method in the
case of non-orthogonal joint diagonalization problem.

5.1. Orthogonal joint diagonalization

In this test, the performance of the proposed algorithm is evalu-
ated for orthogonal joint diagonalization. The data set consisted
of 1000 random realizations of the real two-dimensional matrix set˘
A

`
EmΛmE

H

m

´
A
H
¯M
m=1

, where A is a rotation matrix with ro-
tation angle uniformly distributed in (−180◦, 180◦], the matrices
{Λm}

M

m=1 are diagonal with elements uniformly distributed in (0, 1]
and the matrices {Em}Mm=1 are perturbation rotation matrices with
rotation angles uniformly distributed in (−10◦, 10◦]. The number
of matrices, M , was set to 50 such that the condition M > K

3

K−1

is satis ed. The matrix weights, {wm}Mm=1, were equally set to 1
M
.

In each realization, the values of the objective functionQ∗(B), total
running time and total running time per iteration were calculated for
the SVDJD, Pham’s, AC/DC and FFDIAG algorithms. Calculation
of the running period per iteration of the SVDJD algorithm is given
by TIt = TT otKP

K

k=1
Lk

where TIt, TTot, andLk denote the running time
per iteration, the total running time, and the number of iterations in
the kth dimension, respectively. Calculation of the running time per
iteration of Pham’s, AC/DC and FFDIAG algorithms was performed
by dividing the total running time by the number of iterations. The
mean values, 5th and 95th percentiles of Q∗(B), evaluated for each
algorithm, are depicted in Fig. 2.a. The average running time per
iteration and total running time of each algorithm are depicted in
Fig. 2.b. This gure shows that the average total running time of
the SVDJD algorithm is signi cantly shorter than in the other algo-
rithms.

5.2. Non-orthogonal joint diagonalization

In this test, the performance of the proposed algorithm was evalu-
ated in a scenario of non-orthogonal joint diagonalization problem.
The data set consisted of 1000 random realizations of the real ve-
dimensional matrix set

˘
AΛmA

H + σ2
EmE

H

m

¯M
m=1

, where A is
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Fig. 2. Orthogonal joint diagonalization a) The mean values, 5th
and 95th percentiles of the cost function, Q∗(B). The ’–’ mark de-
notes the mean value, and the lower and upper ’o’ marks denote the
5th and 95th percentiles, respectively; b) The averaged running time
per iteration and the averaged total running time in seconds of the
SVDJD, Pham’s, AC/DC and FFDIAG algorithms.

a random matrix with elements drawn from a standard normal dis-
tribution, the matrices {Λm}

M

m=1 are diagonal with elements uni-
formly distributed in (0, 1] and the matrices {Em}Mm=1 are random
perturbation matrices drawn from a normal standard distribution.
The scalar σ2 is aimed to control the perturbation level andM was
set to 100 such that the conditionM > K

3

K−1
is satis ed. The matrix

weights, {wm}Mm=1, were equally set to 1
M
. The mean values, 5th

and 95th percentiles ofQ∗(B), evaluated for each algorithm, are de-
picted in Fig. 3.a. It can be seen that in low perturbation levels, the
SVDJD algorithm outperforms the other algorithms. The total run-
ning time of each algorithm as a function of the perturbation level,
σ2, are depicted in Fig. 3.b. This gure shows that for different
perturbation levels, the averaged total running time obtained by the
SVDJD algorithm is signi cantly shorter in comparison to Pham’s,
AC/DC and FFDIAG algorithms.

6. CONCLUSION

A new ef cient algorithm, named SVDJD, for approximate joint di-
agonalization of positive-de nite Hermitian matrices is proposed.
The diagonalization matrix,B, is not constrained to be unitary and it
is estimated by iterative optimization of an -based objective function.
Each column in B is estimated independently using iterative SVDs
of a weighted sum of the matrices to be diagonalized. The fact that
each column in B is estimated independently, enables low compu-
tational load, which is practical especially in cases of large amount
of matrices. The algorithm is easy to implement and demonstrates
good diagonalization performance together with low computational
load in comparison to existing state-of-the-art algorithms for approx-
imate joint diagonalization.
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Fig. 3. Non-orthogonal joint diagonalization: a) The mean values
of the cost function, Q∗(B); b) The average total running time in
seconds of the SVDJD, Pham’s, AC/DC and FFDIAG algorithms.
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