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ABSTRACT

In blind equalization, the Constant Modulus Algorithm

(CMA) and Shalvi-Weinstein Algorithm (SWA) present an

unfavorable tradeoff between convergence rate and computa-

tional cost. Inspired in supervised order-recursive algorithms,

we propose a Lattice SWA, which has the number of oper-

ations per iteration of the equalizer order and maintains the

SWA convergence rate. It presents a more robust behavior

than that of SWA, avoiding numerical divergence when im-

plemented in finite precision.

Index Terms— Adaptive filters, blind equalization, order-

recursive algorithms, lattice structure, Shalvi-Weinstein Al-

gorithm.

1. INTRODUCTION

Adaptive equalizers are widely used in modern digital com-

munication systems to remove intersymbol interference in-

troduced by dispersive channels. In the supervised equaliza-

tion, LMS (Least Mean-Square) and RLS (Recursive Least-

Squares) are the most employed algorithms [1]. In blind

equalization, among the most popular adaptive schemes

are the Constant Modulus Algorithm (CMA) [2] and the

Shalvi-Weinstein Algorithm (SWA) [3].

It is well-known in the literature that LMS and RLS pre-

sent an unfavorable tradeoff between convergence rate and

computational cost [1]. The order-recursive RLS algorithms,

such as Least-Squares Lattice (LSL), can be more adequate,

since they have computational complexity of the equalizer or-

der and maintain the RLS convergence rate [1]. An important

member of this algorithm family is the Error Feedback-LSL

(EF-LSL) [4]. Although no proof of its numerical stability is

known, it has always been observed to yield reliable numeri-

cal results, even in finite precision [5].

Based on the link between blind equalization and classi-

cal adaptive filtering of [6], CMA and SWA can be interpreted

as blind versions of LMS and RLS, respectively. Thus, they

present equivalent behaviors compared to those of supervised

This work was supported by FAPESP (02/12216-3).

algorithms. As the RLS algorithm, SWA presents instability

problems and can diverge in some circumstances, after the

initial convergence. In general, this occurs when the forget-

ting factor is not very close to one. In this context, designing

a stable algorithm which has a more favorable tradeoff be-

tween convergence rate and computational cost is a problem

of interest.

Inspired in the order-recursive RLS algorithms obtained

in [7, 5] and in the general methodology for the design of

blind adaptive algorithms [6], we propose a Lattice-SWA (L-

SWA) based on prediction errors. The proposed algorithm

presents a computational complexity of the equalizer order

and can avoid situations of divergence, if adequately imple-

mented.

Throughout the paper, we assume real data, without loss

of generality. In Section 2, the problem formulation is pre-

sented. In Section 3, SWA is obtained from a deterministic

cost function. Then, L-SWA is introduced in Section 4. Sim-

ulation results, confirming the numerical robustness of the al-

gorithm, and the conclusions are presented in sections 5 and 6,

respectively.

2. PROBLEM FORMULATION

A simplified communication system is depicted in Figure 1.

The signal a(n), assumed independent, identically distributed,

and non Gaussian, is transmitted through an unknown chan-

nel, whose model is constituted by an FIR (Finite Impulse Re-

sponse) filter H(z) and additive white Gaussian noise η(n).
From the received signal u(n) and the known statistical prop-

erties of the transmitted signal, the blind equalizer must miti-

gate the channel effects and recover the signal a(n) for some

delay τd. The output of the equalizer is y(n) = uT (n)w,
where T stands for the transpose of a vector, u(n) is the in-

put regressor vector, and w the equalizer weight vector (both

with M coefficients).

As the constant modulus [2] and super-exponential [3]

blind schemes are equivalent under certain circumstances [8],

we consider only the constant modulus cost function,

JG = E
{
(y2(n)− r)2} , (1)
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where r = E{a4(n)}/E{a2(n)} and E{·} stands for expec-

tation operation. Gradient and quasi-Newton methods were

exploited in minimizing JG, leading to several different algo-

rithms. CMA is based on a stochastic gradient approach [2]

and is the most popular due to its simplicity of implementa-

tion. However, the theoretical conditions to ensure its conver-

gence and stability remain an open problem. SWA was origi-

nally derived in [3] from the Super-Exponential cost function

and can be interpreted as a stochastic gradient algorithm with

an optimal step-size [8]. It can also be interpreted as a quasi-

Newton algorithm if the autocorrelation matrix, responsible

for the whitening of the input sequence [3, 1], is assumed to

be an approximation of the Hessian matrix of JG. Its com-

putational complexity is of the order of M 2, which can be

inadequate for many practical situations.
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Fig. 1. Schematic representation of a communication system.

3. A DETERMINISTIC COST FUNCTION AND SWA

Inspired in the least-mean-squares criterion and in (1), we

consider the cost function

J(n) =
n∑

�=0

λn−�(y2(�)− r)2, (2)

where y(�) = uT (�)w(n) and 0 � λ < 1. When the gradient

of J(n) with respect to w(n) is a null vector, we obtain

rΦ(n)w(n) = Θ(n), (3)

where

Φ(n) =
n∑

�=0

λn−�u(�)uT (�)

and

Θ(n) =
n∑

�=0

λn−�y3(�)u(�).

Assuming that the solution of the instant (n − 1) is known,

an update for w(n) can be obtained from (3). Thus, noting

that Φ(n) = λΦ(n− 1) + u(n)uT (n), we can rewrite (3) at

instant n as

rΦ(n)Δw(n)− g(n) = (ȳ2(n)− r)ȳ(n)u(n),

where

Δw(n) = w(n)−w(n− 1),

ȳ(�) = uT (�)w(n− 1),

and

g(n) =
n∑

�=0

λn−�(y3(�)− ȳ3(�))u(�).

Using the approximation

g(n) ≈ 3E{a2(n)}Φ(n)Δw(n), (4)

the update of the coefficient vector can be written as

w(n) = w(n−1)+
1

r − 3E{a2(n)}e(n)Φ(n)−1u(n), (5)

where

e(n) = ȳ(n)(ȳ2(n)− r). (6)

Eq. (5) characterizes SWA. It is relevant to note that: (i) from

a cost function based on the second and fourth order cumu-

lants of the equalizer output, this algorithm was derived in [3],

using empirical approximations for cumulants; (ii) different

from RLS, which provides an exact solution for least-squares

criterion, (5) is not an exact solution for the minimization of

(2) due to the approximation (4).

4. LATTICE-SWA

Using a state-space representation, (5) can be rewritten as

[
w(n)

γ(n)(d(n)− ȳ(n))

]
= A(n)

[
w(n− 1)
d(n)

]
, (7)

where γ(n) = 1− uT (n)Φ−1(n)u(n) and

A(n) =
[
I−Φ−1(n)u(n)uT (n) Φ−1(n)u(n)

−γ(n)uT (n) γ(n)

]

is the state-transition matrix. The scalar

d(n) = x(n)ȳ(n), (8)

with

x(n) =
|ȳ(n)|2 − 3E{a2(n)}
r − 3E{a2(n)} , (9)

can be interpreted as an estimate of the desired response.

Eq. (7) has the same structure of the RLS state-space repre-

sentation used in [9]. However, in the RLS case, d(n) does

not depend on w(n − 1), and here, w(n − 1) is fed back

through a nonlinear mechanism in the evaluation of d(n).
Let Φ(n) = KT (n)D(n)K(n) be the Cholesky factor-

ization [1]. The matrix KT (n) is upper triangular with 1’s

along its main diagonal; all of its elements below the main

diagonal are zero. Moreover, each line represents the coef-

ficients of the backward prediction error filter, whose order

corresponds to the position of that row in the matrix. D(n) is

a diagonal matrix, whose ith element represents the backward

prediction error energy of a filter of order i. Thus,

b(n) = K−T (n)u(n) (10)
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represents the a posteriori backward prediction error vector

and

ψ(n) = K−T (n− 1)u(n) (11)

the a priori backward prediction error vector. Defining

v(n) = K(n)w(n), (12)

from (7), we arrive at

[
v(n)

γ(n)(d(n)− ȳ(n))

]
= B(n)

[
λv(n− 1)
d(n)

]
, (13)

where

B(n) =
[
Γ−1(n)Γ(n− 1) D−1(n)b(n)
−λ−1γ(n)ψT (n) γ(n)

]

and Γ(n) = KT (n)D(n).
We can use (13) to implement SWA using a lattice struc-

ture. The resulting algorithm is named Lattice-SWA (L-SWA).

Each lattice stage provides prediction errors in its output.

From these errors, it is possible to obtain an estimate of the

desired response [1]. The literature contains different versions

of algorithms to obtain prediction errors from the observed se-

quence {u(n)}. However, the modified EF-LSL presents re-

liable numerical properties, even in the absence of persistent

excitation and when implemented in finite precision [5].

From the previous observations, L-SWA, summarized in

Table 1, uses the modified EF-LSL algorithm of [5] for the

prediction section. The variables (Ef
i (n), ηi, k

f
i (n)) and

(Eb
i (n), ψi(n), kb

i (n)) represent respectively, energies, a pri-
ori prediction errors and reflection coefficients of the forward

and backward predictions and γi(n) are the conversion fac-

tors. The variables (b, b̄, f, f̄ ) were introduced to reduce the

computational complexity of the algorithm. To ensure robust

numerical behavior in the prediction section, it is necessary

to avoid divisions by values close to zero in their computa-

tions. To this end, we add a small positive constant δ to the

denominators, whose value depends on the implementation

precision.

For the joint estimation section, using (11) and (12), we

rewrite ȳ(n) = uT (n)w(n−1) as ȳ(n) = ψT (n)v(n−1).
The estimation errors αi, i = 1, 2, · · · ,M − 1 are obtained

from the backward prediction errors and the coefficients

vi(n− 1). The zero-order estimation error is α0 = d(n).
In the supervised case, the numerical robustness of the

algorithm is ensured through the stability of the prediction

section [7]. In the blind case, the desired response d(n) is es-

timated with ȳ(n) multiplied by a correction factor x(n), as

shown in (8). Note that x(n) and ȳ(n) are obtained from a

feedback mechanism, which can cause numerical divergence.

Thus, we also need to include conditions to ensure the sta-

bility of the joint estimation section. To avoid numerical di-

vergence, the correction factor x(n) must always be positive,

which makes that d(n) has the same sign of ȳ(n). If x(n) is

negative, we make d(n) = 0. In this case, the algorithm re-

jects the estimate of the desired response at the instant n. Us-

ing this condition, through exhaustive simulations, we have

not observed divergence, even for small values of λ. More-

over, the behavior of the algorithm is not significatively af-

fected, as shown in the next section.

Table 1 summarizes L-SWA. The variables, which are ini-

tialized with non null values, are listed in the top of this table.

The initialization of v is the same of w in SWA, that is, it

uses the center-tap initialization method. The proposed algo-

rithm requires a computation of (14M + 4) multiplications,

2M divisions and 12M additions. As its computational cost

is of the equalizer order, L-SWA can be interpreted as a fast

version of SWA.

Table 1. Summary of L-SWA.

Initialization:

vΔ(−1) = 1
{Ef

i (0) = Eb
i (−1) = λ}, i = 0, . . . ,M − 1

for n = 1, 2, 3, ... do:

η0 = ψ0(n) = u(n)
α0 = d(n− 1); γ0 = 1
for i = 0 : M − 1,

b = ψi(n− 1)γi

f = ηiγi

Eb
i (n− 1) = λEb

i (n− 2) + ψi(n− 1) b
Ef

i (n) = λEf
i (n− 1) + ηi f

b̄ = b/(δ +Eb
i (n− 1))

f̄ = f/(δ +Ef
i (n))

γi+1 = γi − b̄ b
Lattice:

ψi+1(n) = ψi(n− 1)− kb
i (n− 1)ηi

ηi+1 = ηi − kf
i (n− 1)ψi(n− 1)

kf
i (n) = kf

i (n− 1) + ηi+1b̄
kb

i (n) = kb
i (n− 1) + f̄ψi+1(n)

Joint estimation:

αi+1 = αi − ψi(n− 1) vi(n− 1)
vi(n− 1) = vi(n− 2) + b̄ αi+1

end
ȳ(n) = ψT (n)v(n− 1)
x(n) = (ȳ2(n)− 3E{a2(n)})/(r − 3E{a2(n)})

if x(n) < 0 x(n) = 0 end

d(n) = x(n) ȳ(n)
end

5. SIMULATION RESULTS

In this section, we compare L-SWA of Table 1 to SWA in

different situations. We assume binary signals, the channel

H(z) = h0 +h1z
−1 +h2z

−2, and an equalizer withM = 11
coefficients.
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Figure 2 shows the equalizer output and the squared er-

ror defined in (6), considering absence of noise, λ = 0.8,

h0 = h2 = 0.4 and h1 = 1. We observe that SWA does

not work properly in this situation, diverging after 630 iter-

ations. L-SWA converges after 300 iterations, maintaining a

stable and adequate behavior. For a channel with less inter-

symbol interference, i.e., h0 = h2 = 0.1, SWA and L-SWA

present exactly the same behavior for the first 870 iterations,

as shown in Figure 3. After that, SWA diverges and L-SWA

presents errors during 100 iterations, returning to its adequate

behavior. We should notice that these errors are caused by the

imposition of d(n) = 0. However, this condition is necessary

to ensure its stability.

500 1000 1500
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500 1000 1500
−60
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e2 (n
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Fig. 2. Equalizer output and e2(n) in dB with M = 11, λ =
0.8, h0 = h2 = 0.4, and h1 = 1.
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Fig. 3. Equalizer output and e2(n) in dB with M = 11, λ =
0.8, SNR=20 dB, h0 = h2 = 0.1, and h1 = 1.

It general, when λ is close to one, SWA does not diverge

and both algorithms present exactly the same performance.

The advantages of L-SWA is its lower computational com-

plexity, and an adequate behavior for smaller forgetting fac-

tors.

6. CONCLUSIONS

We proposed a blind Lattice Shalvi-Weisntein Algorithm,

which avoids numerical divergence, has a computational com-

plexity of the equalizer order, and maintains the SWA con-

verge rate. Although there is no proof of its numerical stabil-

ity, the simulations suggest that it presents a robust behavior,

even for small forgetting factors. Further work should imply a

multiple-input multiple-output version for space-time equal-

ization.

7. REFERENCES

[1] S. Haykin, Adptive Filter Theory, Prentice Hall, 3rd edi-

tion, Upper Saddle River, 1996.

[2] D. N. Godard, “Self-recovering equalization and car-

rier tracking in two dimensional data communication sys-

tem,” IEEE Trans. on Commun., vol. 28, pp. 1867–1875,

Nov. 1980.

[3] O. Shalvi and E. Weinstein, “Super-exponential methods

for blind deconvolution,” IEEE Trans. on Inform. Theory,

vol. 39, pp. 504–519, Mar. 1993.

[4] F. Ling, D. Monolakis, and J. G. Proakis, “Numerically

robust least-squares lattice-ladder algorithms with direct

updating of the reflection coefficients,” IEEE Trans. on
Acoutics, Speech and Signal Process., vol. ASSP-34, pp.

837–845, Aug. 1986.

[5] M. D. Miranda, M. Gerken, and M. T. M. Silva, “Efficient

implementation of the a priori error-feedback LSL algo-

rithm,” IEE Eletronics Letters, vol. 35, pp. 1308–1309,

Aug. 1999.

[6] C. B. Papadias and D. T. M. Slock, “Normalized slid-

ing window constant modulus and decision-direct algo-

rithms: a link between blind equalization and classical

adaptive filtering,” IEEE Trans. on Signal Process., vol.

45, pp. 231–235, Jan. 1997.

[7] P. A. Regalia, “Numerical stability properties of a qr-

based fast least squares algorithm,” IEEE Trans. on Sig-
nal Process., vol. 41, pp. 2096–2109, June 1993.

[8] M. Mboup and P. A. Regalia, “A gradient search interpre-

tation of the super-exponential algorithm,” IEEE Trans.
on Inform. Theory, vol. 46, pp. 2731–2734, Nov. 2000.

[9] P. A. Regalia and M. G. Bellanger, “On the duality

between fast QR methods and lattice methods in least-

squares adaptive filtering,” IEEE Trans. on Signal Pro-
cess., vol. 39, pp. 879–891, Apr. 1991.

III ­ 1372


