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ABSTRACT

The convergence properties of adaptive filtering algorithms are in-
vestigated in situations where the optimal filter is modeled as a time-
varying linear system whose parameters are expanded over basis
functions. This type of model is one approach when parameters can-
not be considered as slowly varying, and is appropriate for modeling
certain mobile radio channels and in the identification of the dynam-
ics of vascular autoregulation in kidneys. Appropriate adaptive al-
gorithms are developed in a continuous-time setting, and the local
convergence of these algorithms is studied. Conditions for conver-
gence are shown to include an excitation condition on the algorithm
regressor and a passivity condition on an algorithm operator. The
excitation conditions are interpreted in terms of system signals and
the parameter basis functions using previously established results in
the discrete-time case. A test for the passivity condition is developed
whose application is presented via an illustrative example.

Index Terms— Identification, parameter estimation, adaptive
estimation, time-varying systems, time-varying filters

1. INTRODUCTION

In certain applications of adaptive system estimation, time variations
in the system being identified are too rapid for an assumption of
slowly varying parameters to be valid, as is usually required for ap-
propriate behavior of adaptive filters [1]. These situations require a
more explicit representation of the time-varying system model. The
idea of a basis function expansion can be utilized to adapt to systems
with fast time variations as discussed in [2]. With this approach, the
coefficients of moving average (MA) or auto-regressive moving av-
erage (ARMA) models are expressed as a linear combination of basis
functions. Doing so converts the time-varying parameter estimation
to a time-invariant parameter estimation, which enables us to import
all the theory of time-invariant parameter estimation. This approach
has been used to model rapidly fading mobile radio channels [3] as
well as the autoregulation dynamics in the microvasculature of kid-
neys [4].

Good results in the application of these adaptive systems re-
quires an understanding of the conditions under which the algo-
rithms converge. In [5], we studied convergence properties of adap-
tive algorithms applied to time-varying parameter estimation using
basis functions in the discrete-time setting. We showed that local
convergence of the algorithms required a persistent excitation (PE)
condition on a system regressor and a passivity condition on a time-
varying operator that arose in the algorithm. Work in [5] decom-
posed the PE condition into two parts, one depending on system sig-

nals and the other on the parameter basis functions, and illustrated
their interactions. Here we will extend the PE results to the case
when the model and the adaptive algorithms are in continuous time,
and we also develop results for the satisfaction of the operator con-
dition.

The analysis proceeds by first exposing the relationship that the
prediction error has with the estimator regressor and parameter error.
This prediction error motivates a class of adaptive algorithms de-
scribed in [6]. As in the discrete-time case, sufficient conditions for
the local exponential convergence of these algorithms include a PE
condition on the regressor and a strict passivity condition on a par-
ticular operator. We extend the PE conditions that were developed
in [5] for the continuous-time adaptive algorithms. Also, sufficient
conditions for the strict passivity of the operator will be established.
These conditions depend on having the ‘frozen” operators at each
point in time be strictly passive of a given degree and having the
time rate of change of the operator satisfy a bound determined by
that degree. We present an example that illustrates the application of
this result.

2. PREDICTION ERROR STRUCTURE

Consider the continuous time-varying ARMA model described by

y(n)(t) =
n∑

i=1

ai(t)y
(n−i)(t) +

m∑
j=0

bj(t)u
(m−j)(t) (1)

where n > m and (i) denotes the ith derivative. This model is
the continuous-time version of the discrete-time time-varying model
described in [5]. Let {f�(t), � = 1, . . . , L} be a set of linearly in-
dependent functions, called the basis functions. Assume that each
time-varying parameter can be expressed as a linear combination of
these basis functions, so that

ai(t) =

L∑
�=1

αi�f�(t), bj(t) =

L∑
�=1

βj�f�(t). (2)

Substituting (2) into (1), we obtain

y(n)(t) =
n∑

i=1

L∑
�=1

αi�f�(t)y
(n−i)(t)+

m∑
j=0

L∑
�=1

βj�f�(t)u
(m−j)(t). (3)

III  13611424407281/07/$20.00 ©2007 IEEE ICASSP 2007



Notice that this converts the system model from one with time-varying
parameters to one whose parameters are time-invariant, albeit the
number of parameters has increased by a factor of L.

Using estimates α̂i�(t) and β̂j�(t) of the basis function expan-
sion coefficients, we obtain an estimated output ŷ(t)

ŷ(n)(t) =
n∑

i=1

L∑
�=1

α̂i�(t)f�(t)y
(n−i)(t)+

m∑
j=0

L∑
�=1

β̂j�(t)f�(t)u
(m−j)(t). (4)

When y(k−i) = y(k−i) in (4) we have an equation error estimator,
and when y(k − i) = ŷ(k − i) we have an output error estimator.

Parallel to the development in [6] of a regression-based expres-
sion for time-invariant system dynamics, we may also express (3)
and (4) as linear regressions

y(t) = ψT (t)θ,

ŷ(t) = ψ
T
(t)θ̂(t)

where

ψ(t) = [f1(t)Pn−mu(t) · · · fL(t)Pnu(t)

f1(t)P1y(t) · · · fL(t)Pny(t)]T

θ = [β01 · · · βmL α11 + γ11 · · · αnL + γnL]T

ψ(t) = [f1(t)Pn−mu(t) · · · fL(t)Pnu(t)

f1(t)P1y(t) · · · fL(t)Pny(t)]T

θ̂(t) = [β̂01 · · · β̂mL α̂11 + γ11 · · · α̂nL + γnL]T

and Pi(D, t), i = 1, · · · , n is a family of stable operators of the
form

Pi(D, t) =
Dn−i

C(D, t)
=

Dn−i

Dn + c1(t)Dn−1 + · · · + cn(t)
. (5)

In (5), D is the differential operator and

ci(t) =

L∑
�=1

γi�f�(t) (6)

are user-chosen variables such that (5) is stable. As will be seen, the
choice of C(D, t) enters into the convergence requirements.

We also let θ̃(t) = θ− θ̂(t). Then in the same fashion as in [5],
one can develop an expression for the prediction error as a filtered
version of the inner product between the regressor vector and the
parameter error vector.

Proposition 1. The prediction error e(t) = y(t) − ŷ(t) is given by

e(t) = ψT (t)θ̃(t) (7)

in the equation error case, and it is given by

e(t) = H(D, t)
[
ψ̂T (t)θ̃(t)

]
(8)

in the output error case. In (8), the operator H(D, t) is

H(D, t) =
C(D, t)

Dn − a1(t)Dn−1 − · · · − an(t)
. (9)

Proof. In the equation error case, (7) follows from ψ(t) = ψ(t). In
the output error case, we can show that

e(t) = y(t) − ŷ(t)

= ψT (t)θ − ψ̂T (t)θ̂(t)

= ψT (t)θ − ψ̂T (t)[θ − θ̃(t)]

= [ψT (t) − ψ̂T (t)]θ + ψ̂T (t)θ̃(t). (10)

Noting that

ψ(t) − ψ̂(t) = [0 · · · 0 vT
1 (t) · · · vT

n (t)]T (11)

where

vi(t) = [f1(t)Pi(D, t)e(t) · · · fL(t)Pi(D, t)e(t)]T , (12)

we can write the first term on the right hand side of (10) as

[ψT (t) − ψ̂T (t)]θ =
n∑

i=1

L∑
�=1

[αi�(t) + γi�(t)]f�(t)Pi(D, t)e(t)

=

n∑
i=1

[ai(t) + ci(t)]Pi(D, t)e(t). (13)

Substituting (13) into (10) and rearranging yields

e(t) =

n∑
i=1

[ai(t) + ci(t)]D
n−i

C(D, t)
e(t) + ψ̂T (t)θ̃(t). (14)

So

e(t) =
C(D, t)

Dn − a1(t)Dn−1 − · · · − an(t)

[
ψ̂T (t)θ̃(t)

]
. (15)

Notice that in both (7) and (8), e(t) is a filtered version of an inner
product of a regressor and parameter error vector.

3. ALGORITHMS AND CONVERGENCE

Algorithms appropriate for e(t) in (15) have the form

˙̂
θ(t) = μF (D, t)[ψ(t)]G(D, t)[e(t)] (16)

e(t) = H(D, t)[ψ
T
(t)θ̃(t)] (17)

in continuous-time analogy with the algorithms of [7]. As a trivial
example, the basic equation error algorithm is obtained by letting
G(D, t) = 1 and F (D, t) = 1.

Sufficient conditions for the (local) exponential convergence of
(16) includes a persistence-of-excitation condition on the regressor
ψ(t) and strict passivity of the operator G(D, t)H(D, t)F−1(D, t)
[6]. Clearly, the passivity requirement is guaranteed in the equation
error case.
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4. CONDITIONS FOR PE REGRESSORS

Definition 1. A function ψ(t) is said to be persistently exciting (PE)
if there exist T and η2 ≥ η1 > 0 such that

η1I ≤
∫ t0+T

t=t0

ψ(t)ψT (t)dt ≤ η2I ∀t0 ∈ �+
(18)

where I is the identity matrix.
Note that for time-varying ARMA systems, at θ̃(t) = 0 the regressor
ψ(t) becomes equal to ψ(t), so that the PE condition applies to that
vector sequence.

For identifying time-varying ARMA systems using a basis func-
tion approach, we must interpret the PE condition in that setting.
First, define the ARMA regressor φ(t) to be the vector whose first
M + 1 elements are filtered versions of {u(t)} and whose remain-
ing N elements are filtered versions of {y(t)} (this is the standard
regressor in the time-invariant ARMA setting) and define the basis
function regressor as

f (t) = [ f1(t) · · · fL(t) ]T . (19)

The three regressors f (t), φ(t), and ψ(t) are related by the follow-
ing equation [2]

ψ(t) = φ(t) ⊗ f (t) (20)

where ⊗ denotes the Kronecker product operation.
In the same fashion as in [5], one can establish PE relationships

between the three regressors. In this paper, we will develop the re-
sults in the case of bounded regressors. In the case of unbounded and
random regressors, the results will be similar to their discrete-time
counterparts developed in [5]. Let φ(t) and f (t) be bounded. To es-
tablish a PE relationship between the three regressors, four different
cases that represent all the possible combinations of f (t) and φ(t)
will be studied. Those cases are listed in Table 1.

Table 1. PE relationships for bounded f (t) and φ(t)

Case No. f (t) φ(t) ψ(t)

1) PE PE PE/not PE
2) PE not PE Not PE
3) not PE PE Not PE
4) not PE not PE Not PE

The characterization of ψ(t) in Table 1 as either PE or not PE is ac-
complished in Theorem 1 below. The proof of Theorem 1 proceeds
in a fashion analogous to the proof of the similar result in [5].

Theorem 1. If the basis function regressor f (t) and the ARMA re-
gressor φ(t) are bounded, a necessary condition for the regressor
ψ(t) to be PE is that both of f (t) and φ(t) be PE.

A result that would naturally be desirable is that ψ(t) is PE if
and only if both f (t) and φ(t) are PE. However, it is shown via a
counterexample in [5] that this is not the case. For a discussion of
the PE relationships of unbounded and random regressors see [5]

5. OPERATOR CONDITIONS

The other requirement for local stability of the adaptive algorithm
(16) involves the operator conditions, and central to these is the

strict passivity requirement. These conditions parallel the similar
strict positive reality (SPR) condition applied in output error IIR
filtering [8], together with the attendant algorithm operator selec-
tion. Many of the same types of choices are available for the time-
varying ARMA identification, but a further understanding of when
the passivity condition is satisfied for general time-varying operators
is needed.

Consider the following state variable realization of the operator
G(D, t)H(D, t)F−1(D, t)

ẋ(t) = A(t)x(t) + B(t)w(t) (21)

v(t) = C(t)x(t) + D(t)w(t) (22)

where x is an l-dimensional vector.

Definition 2 ([9],[10]). The linear time-varying system with state
variable realization {A(t), B(t), C(t), D(t)} is strictly passive if
and only if ∃δ > 0 such that

∫ t1

t0

v(t)u(t)dt > δ

∫ t1

t0

u2(t)dt, ∀t1 ≥ t0. (23)

Further, the system of (21) and (22) is passive with degree of passiv-
ity σ ≥ 0, or σ-passive if the system with state variable realization
{σI + A(t), B(t), C(t), D(t)} is strictly passive.

Our analysis will be based on the Kalman-Yakubovich-Popov
(KYP) lemma [10]-[13].

Theorem 2 ([12]). Consider the linear time invariant system with
state variable realization {A, B, C , D} having an exponentially
stable zero input response. The system is σ-SPR if and only if there
exists at least one positive definite symmetric matrix P such that[ −AT P − P A − 2σP P B − CT

(P B − CT )T D + DT

]
> 0 (24)

Based on results in [11] and [13] we have established the fol-
lowing theorem. The proof is omitted because of space limitation.

Theorem 3. Consider the time-varying system with state variable
realization {A(t), B(t), C(t), D(t)} having an exponentially sta-
ble zero input response. Assume that D(t) + DT (t) is nonsingular
for all t. Then the system is strictly passive if there exists at least one
positive definite symmetric matrix P (t) such that for all t ≥ 0, the
matrix

[ −AT (t)P (t) − P (t)A(t) − Ṗ (t) P (t)B(t) − CT (t)

[P (t)B(t) − C(t)T ]T D(t) + DT (t)

]

(25)
is positive definite.

Our main result in the paper is expressed as the following.

Theorem 4. The time varying system {A(t), B(t), C(t), D(t)}
will be passive if the following conditions are satisfied:

• The frozen systems are σ-SPR;

• P (t) is differentiable; with Ṗ (t) < 2σP (t).

Proof. The Theorem follows from direct application of Theorems 2
and 3.
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Example 1. Assume the linear time-varying system of (1) is first
order with

ẏ(t) + a(t)y(t) = u̇(t) + b(t)u(t), (26)

with a(t) = 2 + sin(ωt). (We do not define in this example the
basis functions f (t) since we illustrate only the satisfaction of the
operator condition.) Let C(D, t) = D + c1, with c1 a constant. In
(16) we let F (D, t) = G(D, t) = 1; in (17) we have

H(D, t) =
D + c1

D + a1(t)
. (27)

The convergence of the algorithm is then guaranteed by H(D, t)
being strictly passive and with satisfaction of the appropriate PE
condition. To examine passivity of H(D, t), let (21) and (22) be the
realization with

A(t) = −a(t) (28)

B(t) = 1 (29)

C(t) = c1 − a(t) (30)

D(t) = 1. (31)

The frozen systems are σ-passive if there is P (t) > 0 such that[
2[a(t) − σ]P (t) P (t) + a(t) − c1

P (t) + a(t) − c1 2

]
> 0. (32)

This is satisfied when

4[a(t) − σ]P (t) − [P (t) + a(t) − c1]
2 > 0. (33)

Choosing
P (t) = a(t) + c1 − 2σ (34)

maximizes this determinant, yielding

4[a(t) − σ][a(t) + c1 − 2σ] − [2a(t) − 2σ]2 (35)

= 4(c1 − σ)[a(t) − σ]. (36)

Notice that the minimum value a(t) can take is 1. Hence we need
σ < 1 and σ < c1 for the determinant to be strictly positive. Hence
H(D, t) is σ-passive ∀t for any σ ∈ [0, min(1, c1)).

Let c1 > 1. We then have

σ = 1 − ε (37)

P (t) = a(t) + c1 − 2σ (38)

Ṗ (t) = ω cos(ωt). (39)

For the passivity of the time varying operator H(D, t), we need
Ṗ (t) < 2σP (t), i.e.,

ω cos(ωt) < 2(1 − ε)[a(t) + c1 − 2(1 − ε)] (40)

ω cos(ωt) < 2(1 − ε)[c1 + 2ε + sin(ωt)]. (41)

This is always satisfied if

ω < 2(1 − ε)(c1 − 1 + 2ε). (42)

Taking ε arbitrarily small, we obtain the following sufficient condi-
tion for the strict passivity of H(D, t):

ω < 2(c1 − 1). (43)

Example 1 illustrates Theorem 4. Notice that there is an up-
per bound on the fastest parameter variations in order to guarantee
passivity using Theorem 4. Notice also that by pushing the zero of
this operator far in the left-half-plane, the operator can tolerate more
rapid variations and maintain its passivity.

6. CONCLUSIONS

In this paper we have shown that the persistence-of-excitation (PE)
conditions that were developed in the discrete-time setting can be
extended to the continuous-time case. The first main result in this
paper, stated in Theorem 1, shows that PE of the basis functions and
the ARMA regressors is required for the estimator regressor to be
PE. The second main result, stated in Theorem 4, is a sufficient con-
dition that guarantees the passivity of the estimator operator. Both
PE and passivity are necessary conditions for the convergence of the
algorithm. Future work will develop similar passivity results for the
discrete-time case.
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