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ABSTRACT

This paper studies the behavior of the LMS algorithm for a special
system identi cation problem when partial wavelet transformations
restrict the algorithm’s input vector to a subspace of the unknown
system’s input vector space. It is shown that the independence theory
is not applicable in this case. A new theoretical model for the weight
mean and uctuation behaviors is developed which incorporates the
correlation between successive data vectors (as opposed to using the
independence theory model). Comparison of the new model predic-
tions with Monte Carlo simulations shows good-to-excellent agree-
ment, certainly much better than predicted by the independence the-
ory model.

Index Terms— Adaptive lters, adaptive signal processing, adap-
tive systems.

1. INTRODUCTION

The Least Mean Squares (LMS) is the most popular adaptive algo-
rithm due to its simplicity and robustness [1, 2]. It has been studied
for decades, and yet its exact behavior in certain practical situations
is still to be determined.

A recent paper [3] presented a novel scheme for identifying
sparse impulse responses. Two adaptive lters operate sequentially.
The rst adaptive lter adapts using a partial Haar transform of the
input and yields an estimate of the location of the peak of the sparse
response. The second adaptive lter is then centered about this es-
timate. Both lters are short in comparison to the delay uncertainty
of the unknown channel. Hence, two short adaptive lters are used
instead of one long lter, resulting in faster overall convergence and
reduced computational complexity and storage.

The scheme was analyzed in [3] for two LMS adaptive lters.
The analytic model used the so-called independence assumption (IA)
[1]. For a stationary input vector X(n) = [x(n), . . . , x(n − N +
1)]T , IA assumes that E[X(n)XT (m)] = δ(n − m)Rx, with
Rx = E[X(n)XT (n)]. Monte Carlo simulations of the weight
variance in [3] were shown to be in good agreement with the the-
oretical model for an independent signal model but in signi cant
disagreement with a tapped delay-line (TDL) model.

Previous analyses (not relying on the IA) [4–8] do not consider
an important property of the scheme in [3]. The partial Haar trans-
form yields adaptive lter input vectors which lie in a subspace of the
input vector space to the unknown system. Consider the adaptive l-
tering problem depicted in Fig. 1. Using vector notation [1],W o is
the impulse response to be identi ed.W (n) is the impulse response

This work was partially supported by CNPq under grant No.
308095/2003-0.

of the adaptive lter, and η(n) = d(n)−W o
TX(n) is the portion

of d(n) that cannot be estimated with the adaptive lter. Exact mod-
elling implies that {η(n)} and {x(n)} are statistically independent
random processes. Fig. 2 shows the sparse channel echo cancellation
problem studied in [3], where z(n) is the partial-Haar-transformed
input signal. The portion of Fig. 2 corresponding to the partial Haar
adaptive lter system is detailed in Fig. 3. The partial Haar trans-
formation leads to an input vector Zp(n) = [z1(n), . . . , zq(n)]

T

of lower dimension than X(n) (q < N ) [3]. Hence, the system in
Fig. 3 does not satisfy the conditions for application of the IA. In
Fig. 3, d(n) can be modelled as d(n) = s1(n) + s0(n) + η(n),
where s1(n) can be obtained by linear ltering signals in the sub-
space spanned by Zp(n), s0(n) cannot be cancelled by linearly l-
tering Zp(n) (it is provided by the portion of the input subspace not
captured in Zp(n)) but is correlated with x(n), and η(n) is statisti-
cally independent of x(n).
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Fig. 2. Partial-Haar dual adaptive lter for sparse channels.
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Fig. 3. Adaptive system analyzed

This paper derives a more accurate mathematical model for the
LMS weight behavior than that derived in [3] using the IA for the
system in Fig. 3 with a tapped delay line input. The residual esti-
mation error is shown to be correlated with Zp(n). Thus, the re-
quired analysis differs from previous analyses in two major ways.
The residual estimation error is: 1) correlated in time and 2) statis-
tically dependent on the input signal. The new model yields good-
to-excellent agreement with the Monte Carlo simulations for TDL
inputs.

2. PROBLEM DESCRIPTION

This paper studies the behavior of the system shown in Fig. 3. The
input vector isX(n) = [x(n), . . . , x(n−N+1)]T . The partial Haar
transform is represented by a q×N matrixHMp,

1 and q < N is the
number of adaptive weights inWHp

(n) = [w1(n), . . . , wq(n)]
T .

The dimension q is chosen according to design considerations dis-
cussed in [3]. The input to the adaptive lter is the Partial-Haar
transformed vector Zp(n) = [z1(n), . . . , zq(n)]

T = HMpX(n).
The signal y(n) is an estimate of d(n), which is related to x(n) by

d(n) =W o
T
X(n) + η(n), (1)

whereW o = E[X(n)XT (n)]−1E[d(n)X(n)] is the Wiener solu-
tion for the linear estimation of d(n) from the observations inX(n),
and η(n) is zero-mean, i.i.d. and statistically independent of x(n).
eh(n) is the error for the problem of linearly estimating d(n) from
the observations in Zp(n).

2.1. Properties of the Estimation Error

The partial Haar transformation with q < N leads to under-modelling,
sinceZp(n) lies in a q-dimensional subspace spanned by the columns
ofHMp. It has been shown in [3] that the optimum weight vector in
the partial Haar domain is given byWHpo = (HMpRxH

T
Mp)

−1

×HMpRxW o, which reduces to WHpo = HMpW o for white
inputs.

An important consequence of the under-modelling is the nature
of the optimum estimation error. Using Fig. 3 and the expression
Zp(n) =HMpX(n), the estimation error eh(n) is given by

eh(n) = d(n)−W T
Hp

(n)HMpX(n). (2)

Using (1) in (2) and evaluating the optimum estimation error
eo(n) (corresponding to eh(n) forWHp

=WHpo) yields

eo(n) =
“
W

T
o −W

T
HpoHMp

”
X(n) + η(n). (3)

1According to the notation used in [3], the subscript M relates to the
dimension of the full Haar transform matrix of which HMp is part. The
subscript p stands for partial.

From (3), the autocorrelation of eo(n) can be easily evaluated as

E{eo(n)eo(m)} =
“
W

T
o −W

T
HpoHMp

”
× E

n
X(n)XT (m)

o“
W o −H

T
MpWHpo

”
.

(4)

Since E{X(n)XT (m)} �= 0 even for white x(n), the condition
for eo(n) to be uncorrelated is

W o =HT
MpWHpo. (5)

Eq. (5) cannot be satis ed unlessW o is in the row space ofHMp

(a very special case). Thus, eo(n) is correlated in time. The use of
the IA in (4) would lead to the opposite conclusion.

Straightforward calculation also shows that

E{eo(m)Zp(n)} =HMpE
n
X(n)XT (m)

o
×
“
W o −H

T
MpWHpo

”
.

(6)

For eo(m) to be uncorrelated with Zp(n), it is required that

WHpo =
“
HMpE

n
X(n)XT (m)

o
H

T
Mp

”
−1

×HMpE
n
X(n)XT (m)

o
W o,

(7)

which is true if (5) holds or if m = n, since E
n
X(n)XT (n)

o
=

Rx (E{eo(n)Zp(n)} = 0 by the orthogonality principle). Neglect-
ing the unlikely condition (5), this result shows that the residual es-
timation error is correlated with z(n). The use of the IA would lead
to erroneous results.

The results (4) and (6) show why the IA-based model derived in
[3] leads to poor results for a tapped delay-line input model. These
results also show that the analysis must consider the statistical corre-
lation between the estimation error and Zp(n). Such analysis is not
available in the literature and requires a new approach.

3. FORMULATION OF THE ANALYSIS PROBLEM

The following analysis assumes that:

A1: x(n) is stationary, i.i.d., zero-mean and Gaussian. Thus,Rx =
E[X(n)XT (n)] = σ2xIN , IN the N ×N identity matrix.

A2: x(n) and d(m) for all n andm are zero-mean jointly station-
ary Gaussian sequences.

VectorsX(n) andX(m) are considered statistically dependent
for |n − m| < N . Thus, the IA cannot be used. Moreover, the
existing analysis techniques which avoid IA cannot be used because
the residual estimation cannot be assumed i.i.d..

The LMS weight recursion for the Haar-domain adaptive lter
in Fig. 3 is given by [3, Eq. (14)]

WHp
(n+ 1) =WHp

(n) + μeh(n)Zp(n)

=
h
Iq − μZp(n)Z

T
p (n)

i
WHp

(n) + μd(n)Zp(n)
(8)

SubtractingWHpo =HMpW o from both sides of (8) and de ning
V p(n) =WHp

(n)−WHpo yields a recursion for V p(n),

V p(n+ 1) =
h
Iq − μZp(n)Z

T
p (n)

i
V p(n)

+ μ
h
d(n)−ZT

p (n)WHpo

i
Zp(n).

(9)
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The last term in brackets is the Wiener error eo(n) = d(n) −
ZT
p (n)WHpo. The expected value of the last term in (9) is zero

from the orthogonality principle (E[eo(n)Zp(n)] = 0).
The stochastic algorithm behavior is usually determined using

(9) to derive recursions for the mean E[V p(n)] and the covariance
matrixE[V p(n)V

T
p (n)]. However, recursion forE[V p(n)V

T
p (n)]

occurs only when the assumptionE[X(n)XT (m)] = 0 for n �= m
is used. Otherwise, the recursion involves E[V p(n)V

T
p (m)] for

n �= m as well. A recursion for E[V p(n)V
T
p (m)] will include

expectations involvingX(m) and V p(n) unless one invokes the IA
again.

Our approach to this analysis requires an approximation to (9)
that has a closed form solution so as to avoid the problems described
above with the recursive solution. To this end, the termZp(n)Z

T
p (n)

can be written as a mean plus a uctuating part,

Zp(n)Z
T
p (n) = E

h
Zp(n)Z

T
p (n)

i
+Ψ(n) = σ2xIq +Ψ(n).

(10)
Inserting (10) in (9) yields

V p(n+1) =
`
1− μσ2x

´
V p(n)+μeo(n)Zp(n)−μΨ(n)V p(n).

(11)
Eq. (11) can be viewed as a deterministic recursion for V p(n)

driven by random inputs eo(n)Zp(n) and Ψ(n)V p(n). During
transient, uctuations ofV p(n) are small compared withE[V p(n)],
andΨ(n)V p(n) can be approximated byΨ(n)E[V p(n)]. Close to
convergence E[V p(n)] tends to zero and the input to the recursion
can be approximated by eo(n)Zp(n) if the uctuations in V p(n)
are suf ciently small so that

eo(n)Zp(n)� Ψ(n) {V p(n)− E[V p(n)]} , (12)

which is more valid for slower adaptation rates.
Assuming (12), (11) can be approximated by the recursion

V p(n+ 1) �
`
1− μσ2x

´
V p(n)

+ μeo(n)Zp(n)− μΨ(n)E[V p(n)].
(13)

Eq. (13) can be used to determine the effects of E
ˆ
Zp(n)Z

T
p (m)

˜
�= 0 for n �= m on the behavior of the weight error vector. Viewing
the last two terms on the r.h.s. of (13) as forcing terms, (13) has an
explicit closed form solution

V p(n) �
`
1− μσ2x

´n
V p(0) + μ

n−1X
m=0

`
1− μσ2x

´n−m−1

×
n
eo(m)Zp(m)−Ψ(m)E[V p(m)]

o
.

(14)

Eq. (14) represents a deterministic system with random inputs
and can be used to determine the response to correlated inputs vec-
tors Zp(m), . . . ,Zp(m− k), k = 2, . . . , n− 1.

4. STOCHASTIC BEHAVIOR ANALYSIS

4.1. Mean Weight Behavior

Averaging (14) and using the orthogonality principle,

E [V p(n)] �
`
1− μσ2x

´n
V p(0), (15)

since E[Ψ(n)] = 0. This result coincides with that obtained from
the IA model. Such coincidence is expected since the effects of in-
put vector cross-correlation on the mean weight analysis are ignored
in the approximation (13). Fortunately, this is not the case for the
weight uctuation behavior, as will become clear in the next section.

4.2. Weight Fluctuation Behavior

The covariance matrixQ(n) of V p(n) is

Q(n) = E
nˆ
V p(n)− E[V p(n)]

˜ˆ
V p(n)− E[V p(n)]

˜To

= μ2
n−1X
m=0

n−1X
r=0

`
1− μσ2x

´n−m−1 `
1− μσ2x

´n−r−1

×

»
E

j
Zp(m)eo(m)eo(r)Z

T
p (r)

+Ψ(m)E[V p(m)]E[V T
p (r)]ΨT (r)

ff

−E

j
eo(m)Zp(m)E[V T

p (r)]ΨT (r)

+Ψ(m)E[V p(m)]ZT
p (r)eo(r)

ff–
. (16)

The expected values in (16) is evaluated in [9], and leads to

Q(n) =

„
1− a

1 + a

«
HMp

(
G0(1− a2n)

+

n−1X
ν=1

“
Gν +G

−ν

”`
aν − a2na−ν

´)
H

T
Mp + (1− a)2 a2n−2

×HMp

"
nK0 +

n−1X
ν=1

(n− ν)(Kν +K
−ν)

#
H

T
Mp

+ (1− a)an−1

(
n−1X
ν=1

T ν
`
1− an−ν

´
+

n−1X
ν=1

T
−ν

`
aν − an

´)
,

(17)

where
a = (1− μσ2x) (18a)

Gν =W T
o Z2F νZ2W oF ν + F νZ2W oW

T
o Z2F ν (18b)

Kν =F νH
T
MpV p(0)V

T
p (0)HMpF ν

+ V T
p (0)HMpF−νH

T
MpV p(0)F ν .

(18c)

T ν =HMpFm−r

h
V
T
p (0)HMpF r−mZ2W oIN

+HT
MpV p(0)W

T
o Z2Fm−r

i
H

T
Mp

(18d)

T
−ν =HMp

h
INW

T
o Z2Fm−rH

T
MpV p(0)

+ F r−mZ2W oV
T
p (0)HMp

i
F r−mH

T
Mp.

(18e)

5. SIMULATION RESULTS

Consider the symmetric exponential channel impulse responseW o =
[ar, ar−1, . . . , a, 1, a, . . . , ar−1, ar]T for r = 32 and a = 0.5, lo-
cated in a span of 1024 samples, leading to a sparse channel re-
sponse. This response was used in [3], and is again used here for
comparison. The optimum responsesWHpo for N = 256, 128 and
64 where obtained from the dot product ofW o and the rows of the
associated HMp (inserting enough zeros so that the dot product is
de ned). The channel bulk delay was varied from zero to eight taps.
The variable bulk delay represents the random delay of the channel
with respect to the 1024-tap time span.
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Figs. 4–6 show the tap weight variance over time, estimated
from Monte Carlo simulations by computing tr[Q(n)] for q = 256,
128 and 64 and for different values of max{WHpo}, the maximum
value ofWHpo. The step sizes used were given by μ = 0.1/(q+2)

and σ2x = 1 in all cases. WHp
(n) was initialized at WHp

(0) =
0. The theoretical curves were obtained from (17). For compari-
son, the gures also present the plots corresponding to a sequence
of statistically independent input vectors X(n). Curves identi ed
as “TDL” correspond to theoretical results obtained using (17) and
Monte Carlo simulations for a TDL input model. Curves identi ed
as “Independent” correspond to the model in [3] and simulations for
statistically independent input vectors. Note that there is good-to-
excellent agreement between the theory and simulations, especially
when one compares these results with those in [3] for the IA model.

6. CONCLUSIONS

This paper has developed a new theoretical model for the behavior
of the LMS adaptive algorithm applied to an under-determined sys-
tem identi cation problem with a TDL input signal model. The new
theory is in good-to-excellent agreement with Monte Carlo simula-
tions. This was not the case for the theoretical model based on the
independence theory assumption. The new model can be used to bet-
ter design the scheme proposed in [3] for estimating the location of
the peak of an unknown sparse impulse response. The new approach
can also be used for studying other systems in which the algorithm
operates on a subspace of the input signal space, when the indepen-
dence theory model is no longer valid.
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Fig. 4. tr[Q(n)] for q = 256, max{wHpo} = 0.5625. Smooth
plots: theory. Jagged plots: 100 MC Simulations. Upper plots: In-
dependent (theory from [3]). Lower plots: TDL (theory from (17)).
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