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ABSTRACT
In this paper, we propose a novel adaptive ltering algorithm named
adaptive parallel variable-metric projection (APVP) algorithm, which
includes the proportionate normalized least mean square (PNLMS)
algorithm as its special example. The proposed algorithm is based
on parallel projection (onto multiple closed convex sets) with time-
varying metrics. A convergence analysis of the proposed algorithm
is presented with the aid of the adaptive projected subgradient method.
Numerical examples demonstrate that the proposed algorithm real-
izes echo cancellation superior to the conventional algorithms.

Index Terms— adaptive ltering algorithm, Adaptive Projected
Subgradient Method, proportionate NLMS, variable metric

1. INTRODUCTION

The adaptive projected subgradient method (APSM) [1–3] has given
a avor of the xed point theory (of quasi-nonexpansive mapping)
[4] to the adaptive ltering problem [5]. Precisely speaking, APSM
produces an algorithmic solution to the following time-varying op-
timization problem: minimize asymptotically a sequence of non-
negative convex functions (time-varying objective functions) over
a closed convex set in a real Hilbert space. Moreover, APSM has
been proven to be quite effective in real-world applications [3]; e.g.,
stereophonic acoustic echo cancellation [6], blind multiple access
interference suppression in DS/CDMA systems [7, 8], and adaptive
beamforming [9]. On the other hand, the proportionate normalized
least mean square (PNLMS) algorithm [10, 11] (or its extended ver-
sion: proportionate af ne projection algorithm (PAPA) [12, 13]) has
been reported to perform even better than NLMS (or APA) in case
of sparse estimandum, a system to be estimated, such as in acous-
tic/network echo cancellation.

This paper throws a bridge between APSM and the proportionate-
type algorithms by extending APSM from a constant metric to a
variable one. Thanks to the bene ts from proportionate-type al-
gorithms, we may improve the performance of APSM. Indeed, the
variable-metric version of APSM produces an ef cient algorithm,
named adaptive parallel variable-metric projection (APVP) algo-
rithm, improving convergence behavior even in noisy environments.
By employing a simple metric, the computational complexity (ex-
cluding the complexity to design the time-varying metric) of the
APVP algorithm is kept linear w.r.t. lter length (see Remark 1). A
convergence analysis of APVP is presented in Sec. 3 (all the proofs
are omitted due to lack of space). In Sec. 4, APVP is applied to
the acoustic echo cancellation problem, where the proportionate-
type algorithms are introduced as special cases of APVP. Numer-
ical examples demonstrate that APVP signi cantly improves echo
cancellation ability compared with the PAPA [12] and exponentially
weighted stepsize projection (ESP) [14] algorithms.

2. PROPOSED ADAPTIVE ALGORITHM

Let us start with brief mathematical preliminaries. Throughout the
paper, � and � denote the sets of all real numbers and nonnegative
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integers, respectively. Given a positive de nite matrix ����� ��
�� � � (� � �
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� . Given a continuous convex function � � �� � �,
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ential of � at �, de ned with the (variable) inner product �
� 
�

��

as
�����

���� �� �� � �
� � ��� ����

��

� ���� � ����� 	� �

�
� � �� �. Suppose that there exists an � � �

� s.t. (such that)
���� � �. Then, selecting a subgradient �� � �� � �

� (i.e.,
����� � �����

����, 	� � �
� ), de ne a mapping � ����
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����� if ���� � ��

� otherwise.
(1)

The operator � ����

����� is called the subgradient projection relative to
�. Note in (1) that �� depends on��. From (1), we assume, without
loss of generality, 
��
� � � in the following, where 




�
denotes

the Frobenius norm.
The problem is formulated as follows [1, 2]: minimize asymp-

totically a sequence of nonnegative convex objective functions �� �
�
� � 	����, � � �. APSM has mathematically been proven to

achieve this goal [1, 2]. For the purpose of improving the conver-
gence behavior, we present its variable-metric version below.

Scheme 1 (Variable-Metric Version of the Adaptive Projected
Subgradient Method) For an arbitrarily given �� � �

� , gener-
ate a sequence �������� �

� by

���� ��

� �
��� 	��
 � 	��

����

���	��

�
���� if �

�

����� �� ��

�� otherwise,

where 	� � 	�� 
�, 	� � � (
 and � denote the identity mapping
and the zero vector, respectively).

We remark that it is possible to use a convex-projection operator
�
����
� (or a strongly attracting nonexpansive mapping ��) as in the

original APSM [1, 2] (or the extended APSM [15]), which is useful,
e.g., in multiple access interference suppression in CDMA wireless
communication systems [7]. Here,� ���

� � � �� �
������� �������,
for any given � � �, stands for the projection operator associated
with a nonempty closed convex set � w.r.t. a metric ��.

Let �������� �
� be a sequence of adaptive ltering vectors.

To compute ���� from �� at each � � �, we construct 
 �� �
� �

closed convex sets ����
� , � � �� 
� 
 
 
 � 
, that are de ned by means

of observable data so as to contain the estimandum �� with high re-
liability (see Sec. 4.2). De ne the weights to those data-dependent
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closed convex sets as ����
� � ��� ��, � � �� �� � � � � �, � � �, satisfy-
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yields the proposed algorithm, as shown below (Here, ���
��� �� 	�

��
��� ��� ��
��

stands for the distance from an arbitrary point
� � �� to a closed convex set �).

Algorithm 1 (Adaptive Parallel Variable-Metric Projection
(APVP) Algorithm) For an arbitrarily chosen initial vector �� �
�
� , generate a sequence of adaptive ltering vectors ��������
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An ef cient design of the weights ����
� has been addressed in

[16]. A remark on Algorithm 1 is given below.

Remark 1 (Computational Complexity of Algorithm 1)
(a) (Inherent parallelism) Algorithm 1 has the inherently paral-

lel structure [17], because each projection in (2) can be com-
puted independently (thus in parallel). In fact, in addition
that the algorithm is relevant to parallel implementation, it
has a fault tolerance nature (see [16, Sec. V]).

(b) (Complexity) Note rstly that the complexity shown below ex-
cludes the computation to design�� (e.g., in [11], the ‘strobe
down’ technique is introduced in PNLMS to reduce the com-
plexity for designing ��; see Example 1). By employing
an ‘ef cient’ metric (i.e., the matrix �� has a special struc-
ture such as diagonal), the overall computational complexity
(the number of multiplications/divisions) is kept���� [If��

has no special structure, then the algorithm requires matrix-
vector multiplications]. In addition, by employing � con-
current processors, the computational complexity imposed on
each processor at each iteration is approximately ��
���� .
For more precise discussion on computational complexity, see
[18]. The proposed algorithm can signi cantly raise, by in-
creasing �, convergence speed while keeping low time con-
sumption, which is a great advantage especially in real-time
applications including the acoustic echo cancellation.

3. A CONVERGENCE ANALYSIS

In this section, we present conditions for Scheme 1 to have the re-
markable properties of APSM, (a) asymptotic optimality and (b)
convergence. First of all, the following proposition is straightfor-
wardly veri ed by [2, Theorem 2(a)].

1The factor ���
���� �

���
� �, � � �� �� � � � � �, is constant in terms of �.

Indeed, ���
���� �

���
� � is an automatically-determined weighting factor and

gives a large weight to a set ‘far’ from �� in the sense of the metric ��
�

.

Proposition 1 (Monotone Approximation) Suppose, for �������
generated by Scheme 1, �� �� �� 	� 	� � �

� 	 ����� � ��� 	�

�
����� �����
 �� �, � � �. Then, with 	� �
�
�� �

�
��

��
�

������

��
,

we have
		���� � �����

		
��

�
		�� � �����		��

, ������ � ��. �

The essential difference of Scheme 1 from APSM is the time-
varying metric ��

�
. However, taking a careful look at Proposition 1,

the monotonicity holds w.r.t. different metric at each iteration. This
causes dif culty in a convergence analysis, because the key to prove
those properties is monotonicity of the sequence ���� � �������� ,
��� � � 	�



����

�� , for some �� � � and a xed norm ���. For
an analytical reason, we consider the following assumptions.

Assumption 1 (used also in [2])
(a) There exists �� � � s.t. (i) ���

�
	� �
����� �����

�
� �,

�� � �� and (ii) � 	�


����

�� �� �.

(b) ������������is bounded.

(c) There exists a hyperplane � � �
� s.t. ��	��� �� �, where

��	��� 	� 	� � � 	 
� � � s.t. ���� �� �� � �
 is the rel-
ative interior of � w.r.t. �. Here, ���� �� 	� 	� � �

� 	
��� �� � �
 is an open ball; the norm ��� can be arbi-
trary due to the norm equivalency for nite-dimensional vec-
tor spaces.

Assumption 2
(a) There exist �� � � and a well-de ned norm ���
� s.t.

��� � �
���
� � ����� � �

���
� � ��
��
�����

���������
�

�

�


�� � �� ��� � �� �� � ��� for������� �� ��

(b) There exist �� � � and a well-de ned norm ���
� s.t.

��� � �
��

�

� � ����� � �

��
�

� � �� ��� � �����

�

� �


�� � �� ��� � �� �� � ���

We are now ready to show the remarkable properties below.

Proposition 2 (Properties of �������generated by Scheme 1)
(a) (Boundedness, Asymptotic optimality) Under Assumptions 1(a)

and 2(a), �������is bounded. In addition, under Assumption
1(b), ������������ � �.

(b) (Convergence) Under Assumptions 1(a), 1(c) and 2(b), �������
converges to a point �� � �

� . In addition, under Assump-
tions 1(b), and 2(a), ������������ � � provided that there
exists bounded ������������where ������� � �����������,
�� � �. �

Remark 2 In static environments, employing, e.g., the metric repro-
ducing PNLMS/PAPA (see Example 1), the variation of�� tends to
taper in steady state (i.e., the metric ���

in steady state is nearly
constant), thus Assumption 2 would be natural. (NOTE: Assumption
2 automatically holds in case of a constant metric.) If the variation
of�� does not taper, then one could stop adjusting��.

In dynamic environments (more speci cally, when the estiman-
dum is highly time-variant), it is not obvious that Assumption 2
holds. In such environments, however, the adaptive lter should keep
tracking the time-varying estimandum all the time, thus the mono-
tone approximation at each iteration (see Proposition 1) is a more
desirable property for stability than convergence.
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4. APPLICATION TO ACOUSTIC ECHO CANCELER

4.1. Acoustic Echo Cancellation Problem
The acoustic echo cancellation (AEC) problem [19] is formulated as
follows. Let � � � denote the time index and � � �

� �� �����
the length of echo canceler ��. For notational simplicity, we let
the estimandum (i.e., echo impulse response) �� � �

� . With a
sequence of input signals �������� �, let �������� �

� be a se-
quence of input vectors de ned as�� �� ���� ����� � � � � �������

� .
For � � �� , de ne �� �� ��������� � � � �������� � �

��� (usu-
ally � � � ). Also de ne the noise vector as �� �� ���� ����� � � � �
�������

� � �
� , �� � �, where ������� is a sequence of addi-

tive noise process. We introduce the linear model for the data pro-
cess ������� � �

� : �� �� ��
� �

� � ��. The goal of the echo
cancellation is to remove (or cancel) the echo part ��

� �
� in �� by

subtracting the output of adaptive (linear) lter �� � �� , � � �, as
�� 	�

�
���. Since �� 
 �� implies successful echo cancellation,

the problem can be interpreted as system identi cation (i.e., identify
an estimandum �� by means of input-output relations), which is also
known as adaptive ltering.

A special example of Algorithm 1 for AEC is given below.

Example 1 Let, in Algorithm 1,����
� �� �� ��

�
� � �� � ��

� � �
���, �� � �, with 	 � 	. Then we get the following algorithm:
���� �� �� � 
�

�
�
����
��

���� 	��
�
. In particular2, �� ��

���� �
������

��
�
yields the proportionate APA (PAPA) algorithm [12,

13] (or the proportionate NLMS (PNLMS) algorithm [10, 11] if � �

	). Here, �� �� diag�
���� � 

���
� � � � � � 


���
� � � � with 
���� ��

�
���
� ��

��

��� �
���
� �� �� � 	� 
� � � � � � , ����� �� ��


�
��

���
��	� ��

���
� �

�
,

and ������	 �� ��
�Æ� ��
���
� �� ��

���
� �� � � � � ��

���
� ��. � and Æ are small

positive constants; ����� the �th component of ��; and diag�� � � �
stands for a diagonal matrix (the arguments are scalars or square
matrices). Modi ed designs of the matrix �� are also proposed,
e.g., in [13, 20–22].

4.2. Ef cient Echo Canceler by Algorithm 1

We present a more ef cient realization of Algorithm 1 for AEC;
we show (i) how to design the data-dependent closed convex sets
��

���
� �����, � � �, containing the estimandum �� with high relia-

bility, and (ii) how to compute the projection onto those sets.
As a rst step, we de ne the stochastic property set3 [23]: �����

��
�
� � �� � ����� �� �������

�
�
� � � �

�
� �� � �, where

�� � �� � �
� , � �� ��

�� � ��, is the error (or residual)
function and � � � a parameter governing the membership prob-
ability that �� � �����; noise statistics are involved in the de-
sign of � [23, Ex. 1]. Since the computational cost for the direct
projection onto ����� is prohibitive in general, we introduce the
following outer approximating half-space [6, 16, 23] (see [24] for
other outer approximation): ��

���
� �����

� ���� �� 	� � �
� ��

�� ���
����
������

�
��

� ������ � �� � ������ where

����

������ � ����
� � ������� � �����

������ �� 	� � �
� �


�� �������

������� � ������ �� � �
� �. Note that �����

������

� 	
����
������� in this (differentiable) case.

The projection onto ��

� ���� has the following simple closed-

form expression: � ����

�
�

�
����

���� � �� �
�������

�
����
������

�
��
��

2Although �� �� ���
�

is used in [10, 11], we use its normalized ver-
sion. The normalization makes the algorithm more stable when we use regu-
larization, while nothing is changed without regularization.

3For uni ed notation, ���� will be used for the Euclidean norm.
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Fig. 1. A comparison among the proposed, PAPA, and ESP algo-
rithms in system mismatch and ERLE.

Table 1. Steady-state performance of the proposed, ESP and PAPA
algorithms.

Algorithm Prop(a) Prop(b) PAPA ESP
System Mismatch [dB] -17.3 -16.8 -15.0 -13.3
ERLE [dB] 20.5 19.3 18.6 17.1

�����
������, if �� �� ��

� ����, � ����

�
�

�
����

���� � ��, otherwise.

NOTE [23]: � ����

�
�

�
����

���� �� �
����

�����
����; and �

����

�
�

�
����

���� re-

quires only ���� complexity.

5. NUMERICAL EXAMPLES

We compare the performance of the proposed algorithm (Algorithm
1) with ESP [14] and PAPA [12] in the AEC problem under the
following conditions. The input signal �� is English-native-male’s
speech recorded at sampling rate 8 kHz. The noise �� is white with
SNR � �� dB. A real impulse response4

�
� � �

� recorded in a
small room is used for � � ����.

We adopt two measures: (i) system mismatch de ned as �� �	
��
��������

�
����

����� at �th iteration, and (ii) the Echo Return Loss
Enhancement (ERLE) [19]. To obtain smooth ERLE curves, after
calculating instantaneous ERLE at �th iteration, we pass the instan-
taneous one through a smoothing lter three times5.

For the metric ���
in the proposed algorithm, we use the fol-

lowing: (a) �
�
��

�

designed in the same way as PNLMS [10, 11] (see
Example 1); and (b) ���� designed in the same way as ESP (see
[14, 25]; we employ the exponential factor 	 � �
���
� for better
performance). Proposed-(b), a constant version of APVP, has been
presented in [26]. For proposed-(a) and proposed-(b), we set � � �,
� � �, 
� � �
�, �� � �, ����

� � ���, �� � �� �� � � � � �, �� � �,
and � � ���� ��; ������ gives the peak value of the probability

4We employed the impulse response available at http://www.echocha-
mber.ch/responses/960/rooms.zip; the name of the le is “1960small room.
wav”. As the frequency of the downloaded sample is in fact 44.1 kHz, we
convert it by the matlab command ‘resample’ into 8 kHz.

5Precisely, ������� �� ����
���
��	��� with ������
����	 ��� �����
�

	�
�����
����

���
��	���

�
� �� 	 �� ��� � �� 	 
�, for � � �� 
� 
,

where � � ���� and ���� �� ������ �� for any integer �.
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density function �� of the random variable � �� ����
�

�
[23]. For

PAPA, we set � � � and �� � ����, �� � �, with the same metric
as proposed-(a). For ESP, we set � � � and �� � ����, �� � �,
with the same metric as proposed-(b). The step size for each algo-
rithm was tuned so that all the algorithms attain almost the same
initial convergence speed.

Fig. 1 illustrates the simulation results, where we see that the
proposed algorithm signi cantly outperforms the conventional ones.
More precisely, Table 1 gives the steady-state performance; system
mismatch and ERLE in Table 1 express the values averaged uni-
formly over the last ��� � ��

� and ��� � ��
� samples (12.5 [sec.]

and 40 [sec.]), respectively. We observe that, compared with ESP,
proposed-(a) gains approximately 4 dB and 3 dB in system mismatch
and ERLE, respectively, while compared with PAPA approximately
2 dB both in system mismatch and ERLE.

Finally, we remark that proposed-(a) achieves more than 1 dB
better ERLE than proposed-(b) although we select a best metric in
proposed-(b) among the constant metrics in the form of ���� . This
implies that, in highly time-varying situations such as mobile telecom-
munications (where it is dif cult to attain always a good constant
metric), the difference between the use of the variable metric [proposed-
(a)] and the use of the constant one [proposed-(b)] is expected to be
more apparent (a comparison in such a situation between the stan-
dard and generalized-proportionate APA algorithms has been pre-
sented in [21]).

6. CONCLUSION

This paper has proposed the adaptive parallel variable-metric projec-
tion (APVP) algorithm and has presented its convergence analysis.
By employing a reasonable metric such as the one used in PNLMS,
the proposed algorithm converges, under natural conditions, to a
point optimal in an asymptotic sense. The simulation results have
shown that the proposed algorithm achieves echo cancellation better
than the ESP and PAPA algorithms with linear computational com-
plexity. Those remarkable improvements are realized by bringing an
idea of PNLMS to APSM with the use of variable-metric.
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