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ABSTRACT

A new variable step-size least-mean-square (VSSLMS) algorithm

is presented in this paper for applications in which the desired re-

sponse contains nonstationary noise with high variance. The step

size of the proposed VSSLMS algorithm is controlled by the nor-

malized square Euclidean norm of the averaged gradient vector, and

is henceforth referred to as the NSVSSLMS algorithm. As shown by

the analysis and simulation results, the proposed algorithm has both

fast convergence rate and robustness to high-variance noise signals,

and performs better than Greenburg’s sum method, which is a robust

algorithm for applications with nonstationary noise.

Index Terms— Adaptive filters, variable step size LMS algo-

rithm

1. INTRODUCTION

The LMS algorithm has been extensively used in many applications

as a consequence of its simplicity and robustness [1][2]. A key pa-

rameter in the design of LMS-based algorithms is the step size. It

is well known that the VSSLMS algorithms can improve the perfor-

mance of the LMS algorithm. In a summary of [2, p.255], several

variable step-size algorithms designed to enhance the performance

of the LMS algorithm have been given [3]-[6]. However, the algo-

rithms in [3],[5] are very sensitive to interference noise, while the

method in [4] needs the noise signal to be uncorrelated, and the

method proposed in [6] is only suitable for stationary and low-level

noise conditions; thus, they are limited in many applications. To the

best of our knowledge, no variable step-size LMS algorithm has been

proposed for a wide range of applications where the noise signal is

correlated, potentially high variance, such as speech signals.

As shown in [7], some normalization terms can be utilized to

modify the LMS algorithm, so as to overcome the interference of

nonstationary noise. One such modified LMS algorithm, namely the

sum method, is discussed by Greenburg in [7]. This algorithm can

be deemed as a fixed step-size algorithm with normalized gradient

vector which is designed to minimize the steady-state mean-square

error (MSE). However, it is based on a constant convergence rate.

Similar to the case of the LMS algorithm, a variable step-size algo-

rithm is also necessary to obtain both fast convergence rate and small

steady state MSE.

In this paper we propose a new variable step-size algorithm, a

NSVSSLMS algorithm, which is robust to high-variance noise sig-

nals. In this algorithm, the step size is controlled by a normalized

square Euclidean norm of the smoothed gradient vector. It will be

shown that the proposed algorithm performs better than Greenberg’s

sum method for the scenario when the noise signal is nonstation-

ary. It can be deemed as a variable step-size version of Greenberg’s

method.

The remainder of this paper is organized as follows: The pro-

posed algorithm is described in Section 2. The analysis of the pro-

posed algorithm in the context of stationary noise is introduced in

Section 3. A simulation that confirms the analysis and the advan-

tages of the proposed algorithm for nonstationary noise as compared

with Greenburg’s method is shown in Section 4. Section 5 provides

conclusions.

2. ALGORITHM FORMULATION

2.1. Preliminary

In this section we will briefly review Greenburg’s sum method [7],

which is the foundation of the proposed algorithm. For the conve-

nience of presentation, we formulate the LMS algorithm within the

context of adaptive noise cancellation model, similar to the approach

in [7]. In this case, the primary signal d(n) can be formulated as fol-

lows:

d(n) = xT(n)wopt + t(n) (1)

where x(n) is the input reference vector, wopt is the optimal filter

vector, t(n) is the target signal, while is also the noise signal for the

LMS algorithm, n denotes the discrete-time index and (·)T denotes

the vector transpose operator. The output error of the system e(n)
is the difference between the primary signal and the output of the

adaptive filter:

e(n) = d(n) − xT(n)w(n) (2)

where w(n) is the adaptive filter vector. The update equation of the

LMS algorithm is then given by [1]:

w(n + 1) = w(n) + μe(n)x(n) (3)

where μ is the step size.
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In [7], a modified LMS algorithm named the sum method is

shown to be suitable for nonstationary input and target signals. The

update of the adaptive filter coefficients of this algorithm is as fol-

lows:

w(n + 1) = w(n) +
μsume(n)x(n)

{L[σ̂2
e(n) + σ̂2

x(n)]} (4)

where μsum is the step size for this sum method, σ̂2
e(n) and σ̂2

x(n) are

time varying estimations of the output error signal variance and the

input signal variance respectively, and L is the adaptive filter length

[7]. As explained in [7], the step size in (4) is adjusted by the input

and output error variance automatically, which reduces the influence

brought by the fluctuation of the input and the target signals.

Next we will introduce the proposed new variable step size al-

gorithm.

2.2. Proposed NSVSSLMS algorithm

The proposed NSVSSLMS algorithm can be formulated as follows:

ḡ(n) = βḡ(n − 1) + (1 − β)x(n)e(n) (5)

μNSVSS(n) =
P ‖ḡ(n)‖2

2

{L[σ̂2
e(n) + σ̂2

x(n)]}2
(6)

w(n + 1) = w(n) + μNSVSS(n)e(n)x(n) (7)

where ḡ(n) is the smoothed gradient vector, P is a positive constant,

which can be easily chosen according to the analysis in the next sec-

tion, μNSVSS(n) is the time-varying step size, and ‖·‖2
2 denotes the

squared Euclidean norm operator. The key step of this algorithm is

(6), which is motivated as follows.

To develop a VSSLMS algorithm, the most important thing is

to measure the proximity of the adaptive process to the desired so-

lution. An ideal measure of the adaptive process is the mean square

deviation (MSD), which is defined as E{‖wopt − w(n)‖2
2}, where

E{·} represents statistical expectation. According to the formula-

tion in [6], with a stationary input signal, the squared norm of the

smoothed gradient vector which is formulated by (5) can track the

variance of the MSD; thus, it is a good measure of the proximity of

the adaptive process, and suitable to control the step size. The term

L[σ̂2
e(n) + σ̂2

x(n)] in (6) is motivated by [7]. The square of this

term, as a novel normalization for the step size, is designed to make

the steady-state excess mean-square error (EMSE) of the proposed

algorithm robust to the target signal.

It will be shown in the following analysis that the proposed al-

gorithm has robustness to the high variance of the target signal. Fur-

thermore, the parameter P in the proposed algorithm can be easily

determined according to the performance analysis in the next sec-

tion.

3. APPROXIMATE PERFORMANCE ANALYSIS OF THE
PROPOSED ALGORITHM

In this section we will give an approximate steady-state performance

analysis of the proposed NSVSSLMS algorithm. For the conve-

nience of analysis we make two assumptions:

A1. The input signal x(n) is a zero-mean stationary white sig-
nal. The target signal t(n) is also zero-mean stationary and inde-
pendent of the input signal x(n).

A2. At steady state the excess mean square error is much smaller
than the target signal variance, and therefore the error signal e(n)
is approximately equal to the target signal t(n).

Assumption A1 is a general assumption for the analysis of the

VSSLMS algorithm. We are justified in assuming the noise is sta-

tionary on the basis that signals such as speech can be assumed sta-

tionary over a certain interval. Assumption A2 is true in the adaptive

noise canceller, if the step size is not very large. Using these assump-

tions simplifies the analysis and gives insight into the performance

of the algorithm.

Since the squared norm of the smoothed normalized gradient

vector ‖ḡ(n)‖2
2 is the key term for the proposed algorithm, we will

give a steady-state performance analysis for this term first. From (5)

we have

ḡ(n) = (1 − β)
n∑

i=1

βn−ig(i) (8)

assuming ḡ(0) = 0 and denoting g(i) = e(i)x(i). The expected

performance of the squared norm of the smoothed gradient vector

can then be obtained

E{‖ḡ(n)‖2
2} = (1 − β)2

n∑

i=1

n∑

j=1

C(i, j) (9)

where C(i, j) is defined as

C(i, j) = E{βn−igT(i)βn−jg(j)}. (10)

When n approaches infinity, the term βn−i in (10) approaches to

zero if i is finite. So when we calculate E{‖ḡ(∞)‖2
2}, the term

C(i, j) can be ignored when i or j are not infinite. The following

analysis will only consider this term at steady state, i.e., i and j are

both steady-state time indexes.

At first we consider C(i, j) when i = j. From assumption A2
we have

e(i) ≈ t(i). (11)

With (11), the gradient vector g(i) can also be approximately

written as

g(i) ≈ t(i)x(i). (12)

Substituting this into (10) we obtain

C(i, i) ≈ E{β2n−2ixT(i)x(i)t2(i)}. (13)

With assumption A1, (13) becomes

C(i, i) ≈ β2n−2iLσ2
xσ2

t (14)

where σ2
t and σ2

x are the variances of the target signal and input

signal respectively. When i �= j, similar derivation can be performed

which yields

C(i, j) ≈ 0 when i �= j (15)

Substituting (14) and (15) into (9) we have

lim
n→∞

E{‖ḡ(n)‖2
2} ≈ (1 − β)2

n∑

i=s

β2(n−i)Lσ2
xσ2

t (16)

where s is the time index beyond which the system is assumed at

steady state. Equation (16) can be simplified as:

E{‖ḡ(∞)‖2
2} ≈ (1 − β)

(1 + β)
Lσ2

xσ2
t . (17)
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Now let’s examine the steady-state performance of the proposed

algorithm. Since the term {L[σ̂2
x(n)+σ̂2

t (n)]}2 changes very slowly

with stationary input and noise signals, we assume that it is a con-

stant during the iteration. Taking the expectation on both sides of

(6), we have

E{μNSVSS(n)} =
PE{‖ḡ(n)‖2

2}
{L[σ̂2

x(n) + σ̂2
t (n)]}2

. (18)

Substituting (17) into (18) we have

E{μNSVSS(∞)} ≈ P (1 − β)Lσ2
xσ2

t

(1 + β){L[σ̂2
x(n) + σ̂2

t (n)]}2
. (19)

As described by equation (16) in [7], the steady-state EMSE of

the LMS algorithm which is defined as E{[e(n) − t(n)]2} can be

formulated as

Jex,LMS(∞) =
μLMSLσ2

xσ2
t

2 − μLMSLσ2
x

. (20)

If we assume that μLMS is very small so that μLMSLσ2
x � 2, we have

Jex,LMS(∞) ≈ 1

2
μLMSLσ2

xσ2
t . (21)

Similarly, if we assume that at steady state the step size of the pro-

posed algorithm is very small, and μNSVSS(∞)Lσ2
x � 2, the EMSE

of the proposed algorithm can then be formulated as

Jex,NSVSS(∞) ≈ 1

2
E{μNSVSS(∞)}Lσ2

xσ2
t . (22)

Substituting (19) into (22) we obtain the steady-state EMSE for the

proposed NSVSSLMS algorithm:

Jex,NSVSS(∞) ≈ P (1 − β)L2σ4
t σ4

x

2(1 + β){L[σ̂2
x(n) + σ̂2

t (n)]}2
. (23)

Since σ̂2
t (n) ≈ σ2

t , the following equation is obtained from (23)

lim
σ2

t →∞
Jex,NSVSS(∞) ≈ P (1 − β)σ4

x

2(1 + β)
. (24)

It can be clearly seen from (24) that the EMSE obtained by the

proposed algorithm will be independent of the target signal t(n)
when the variance of the target signal is very large. Although the

analysis is based on the assumption that the target signal is station-

ary, an approximate indication of its general performance is also ob-

tained. For some nonstationary target signals, such as speech, they

can be deemed as stationary over some short interval. When the

variance of some intervals of the target signal is much higher than

the input signal at steady state, the EMSE will be independent of the

variance of the target signal; thus, the proposed algorithm is robust

for applications with nonstationary target signals.

Now let’s consider the choice of the parameter P . Note that (24)

also gives an upper bound of the steady state EMSE of the proposed

algorithm with the variation of the target variance. To choose this pa-

rameter, we first need to determine an upper bound value of Jex,NSVSS

according to the application. With this value and the variance of the

input signal, P can be determined directly according to (24):

P =
Jex,NSVSS, max2(1 + β)

(1 − β)σ4
x

(25)

where Jex,NSVSS, max is the upper bound value of the EMSE.

If the maximum short-interval variance of the nonstationary tar-

get signal can be obtained, a more accurate criterion for the choice

of P similar to (25) can be obtained according to (23). In practice,

since the target variance is not infinite, the parameter P can be a little

larger than the value obtained from (25).

In the next section, all the above analysis and discussion will

be supported by simulation in the context of a nonstationary target

signal.

4. SIMULATION

In this simulation, we will compare the performance between Green-

burg’s method and the proposed algorithm within an adaptive noise

canceller model. The input signal x(n) is a pseudo-random, zero-

mean unit-variance Gaussian signal with a length of 100,000 sam-

ples. The target signal t(n) is the first 100, 000 samples of a speech

signal which is available from

http://www.voiptroubleshooter.com/open speech/american.html,

and the file name is “OSR us 000 0016 8k.wav”. This target signal

is scaled to make the average SNR over the entire observation 0dB.

The target signal and one representation of the input signal can be

seen in Fig. 1.

The primary signal d(n) is obtained as follows:

d(n) = x(n) ∗ h(l) + t(n) (26)

where h(l) is the optimal filter obtained by

h(l) = e−0.05lr(l), l = 1, ..., 100 (27)

where r(l) is drawn from a zero mean unit variance Gaussian se-

quence. One representation of h(l) can be seen in Fig. 2(a).

In this simulation the proposed algorithm will be compared to

Greenburg’s method with different step sizes 0.1 and 0.02. The ini-

tial step sizes and adaptive filter vectors of the proposed algorithm

are set to zero. The parameter β for the proposed algorithm is set

to 0.999 to perform a sufficient smoothing operation. The parameter

P in the proposed algorithm is set to 80. The parameter sets for the

proposed algorithm are chosen to make its initial convergence rate

approximately equal to that of Greenburg’s method with a step size

0.1. The estimates σ̂2
e(n) and σ̂2

x(n) used in Greenburg’s algorithm

and the proposed algorithm are obtained by smoothing the input and

error signals as

σ̂2
e(n) = 0.99σ̂2

e(n − 1) + (1 − 0.99)e2(n) (28)

and

σ̂2
x(n) = 0.99σ̂2

x(n − 1) + (1 − 0.99)x2(n). (29)

The initial values of σ̂2
e(n) and σ̂2

x(n) are set to zero and unit

respectively. The evolutions of the EMSE curves for all the exper-

iments are shown in Fig. 2(b). The results are obtained over 200
Monte Carlo trials of the same experiment.

It is clear seen in Fig. 2(b) that the proposed algorithm has a

EMSE convergence rate similar to that of Greenburg’s method with

a parameter 0.1 at the early state of the process. The EMSE of both

methods converges to −20dB at about 3,000 samples. However, the

EMSE of Greenburg’s method with parameter 0.1 fluctuates greatly

with the variation of the target signal energy. The performance of

Greenburg’s method with parameter 0.02 has a small EMSE and

slight fluctuation of the EMSE, but the convergence rate is very slow.
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(a) The noise signal
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(b) One representation of the input signal

Fig. 1: The noise signal (a) and one representation of the input signal

(b).

The proposed algorithm has a fast convergence rate which is simi-

lar to Greenburg’s method with parameter 0.1, and a small EMSE

which is close to that of Greenburg’s method with parameter 0.02.

Therefore, the proposed NSVSSLMS algorithm performs better than

Greenburg’s method.

The theoretical upper bound of the EMSE of the proposed algo-

rithm according to (24) is also shown in Fig. 2(b). It can be seen that

over the interval 15, 000 to 20, 000, where the variance of the target

signal is high, the EMSE of the simulation results is very close to

this theoretical upper bound. Thus (24) can give a good upper bound

of the steady-state EMSE for the proposed algorithm, and we con-

clude that with a given upper bound of the steady-state EMSE, the

parameter P can be properly chosen according to (25).

Note that all the analysis and simulation are based on a white

input signal. When the input signal is correlated, the analysis re-

sults obtained from (19) and (23) are both incorrect, and smaller than

the pratical results. In this case, the parameter P should be chosen

smaller than the value obtained from (24). Finally, if both input and

noise signals are nonstationary signals, the smoothed gradient vec-

tor can not measure the proximity of the adaptive process, and the

proposed algorithm has no advantage as compared with Greenburg’s

method. A new variable step-size approach is needed in such cases.

5. CONCLUSIONS

A new VSSLMS algorithm, namely the NSVSSLMS algorithm, has

been presented in this paper. According to our analysis and sim-

ulation results, the proposed algorithm performs better than Green-

burg’s sum method with stationary input and nonstationary noise sig-

nals. Simulations show that this algorithm can obtain both fast con-

vergence and small EMSE with robustness to nonstationary noise

signals. Future work will focus on the issues when both the input

signal and the noise signal are nonstationary.
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Fig. 2: One representation of the optimal filter (a) and the evolu-

tion curves of the EMSE for Greenburg’s, Shin’s, and the proposed

NSVSSLMS algorithms (b).
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