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ABSTRACT

Adaptive subband structures have been proposed with the objective
of increasing the convergence speed and/or reducing the computa-
tional complexity of conventional adaptive algorithms, mainly for
applications which require a large number of adaptive coefficients.
In this paper, we present a non-uniform subband structure with criti-
cal sampling, which is able of modeling an arbitrary FIR system with
reduced aliasing. An LMS-type adaptation algorithm with normal-
ized step-sizes, which works at the lowest downsampling rate and
minimizes the average of the subband squared-errors, is derived for
the proposed structure. A convergence analysis of the adaptation al-
gorithm is presented, from which the steady-state mean-square error
can be estimated.

Index Terms— Adaptive filters, Filter banks, Convergence anal-
ysis, Digital signal processing, Multirate processing

1. INTRODUCTION

Subband structures are attractive in applications that require high-
order adaptive filters, such as acoustic echo cancellation and channel
equalization, because of their properties of acceleration of the adap-
tation convergence and reduction of the computational complexity.
Several adaptive subband algorithms have been proposed recently,
using oversampled or critically sampled decomposed signals [1], [2].
In the critically sampled structures, there are necessarily extra filters
between the subbands to eliminate the aliasing effects [1]. In the
structure proposed in [2], the extra filters are not updated indepen-
dently, but are directly derived from the main subfilters.

Most of the proposed subband adaptive structures employ uni-
form filter banks. A recent work [3], however, has shown that non-
uniform subband adaptive structures may be able to outperform the
uniform ones. The non-uniform subband structure presented in [3]
employs oversampled subband signals. A non-uniform critically-
sampled structure was derived in [4]. In this paper, we present a con-
vergence analysis of the mean-square error obtained with the struc-
ture of [4]. Because of the non-uniform frequency decomposition
of the input signal, the distinct adaptive subfilters work at different
rates, which leads to some particularities in the adaptation algorithm.

In Section 2 the non-uniform subband structure with critical sam-
pling is described and an LMS-type adaptive algorithm for the up-
date of the coefficients of the subfilters is presented. An expression
for the optimal coefficients of the proposed structure in terms of the
unknown system impulse response is derived in Section 3. Section 4
contains the mean-square error analysis. In Section 5 computer sim-
ulations are presented in order to illustrate the convergence behavior
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Fig. 1. Adaptive subband structure composed by a non-uniform
analysis filter bank and sparse subfilters.

and verify the theoretical analysis results. In Section 6 concluding
remarks are made.

2. ADAPTIVE NON-UNIFORM SUBBAND STRUCTURE
WITH CRITICAL SAMPLING

The non-uniform subband structure is derived from an adaptive filter
that employs an analysis filter bank to decompose the input signal
and sparse adaptive filters in the subbands [5]. Such structure is
illustrated in Fig. 1, where x(n) is the input signal, Hk(z) are the
subfilters of an M-channel non-uniform analysis bank, Gk(z

Lk ) are
the sparse adaptive subfilters, d(n) is the desired signal, and e(n) is
the error signal used on the adaptation algorithm.

For an M -channel octave-band filter bank [6], the sparsity fac-
tors are L0 = 2

M−1 and Lk = 2
M−k for 1 ≤ k < M − 1. The

delays Δk in Fig. 1 were introduced with the purpose of matching
the delays of the different length analysis filters.

The non-uniform critically sampled structure is derived from
the sparse subband structure of Fig. 1 by including a non-uniform
perfect-reconstruction multirate system following each adaptive sub-
filter. Considering that the analysis filters are sufficiently selective
to assume that their frequency responses only overlap with those of
the adjacent subbands and moving the sparse subfilters Gk(z

Lk) to
the right of decimators [6], we obtain the non-uniform critically-
sampled structure with its k-th band illustrated in Fig. 2, where
Hi,j(z) = Hi(z)Hj(z). Observe that the adaptive filters now work
at a rate which is (1/Lk)-th or (1/Lk+1)-th of the input rate.
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Fig. 2. The k-th subband with adaptive filters at lower rates.

Denoting as Gi(m) the vector containing the NGi
coefficients

of the subfilter Gi(z) at iteration m, as Xi,j(m) the downsampled
signal at the output of Hi,j , and as Xi,j(m) the vector containing
the most recent NGi

samples of Xi,j(m) (downsampled by a fac-
tor Li,j = min(Li, Lj) with respect to the input signal x(n)), and
considering as cost function the sum of the subband average squared-
errors, that is,

J(m) =

M−1X
k=0

1

lk

lk−1X
q=0

E2k(m
′

k), (1)

with lk = L0/Lk ,m
′

k = lkm+q and q = 0, ..., lk−1, the updating
equation for the coefficients of the k-th subfilter is given by

Gk(m+ 1)=Gk(m)+
μk,k
lk

lk−1X
q=0

Xk,k(m
′

k−
Δk
Lk
)Ek(m

′

k)

+
μk−1,k
lk−1

lk−1−1X
q=0

Xk,k−1(
Lk−1
Lk

m
′

k−1 −
Δk
Lk−1

)Ek−1(m
′

k−1)

+
μk,k+1
lk+1

lk+1−1X
q=0

X
↓

k,k+1(m
′

k+1 −
Δk
Lk+1

)Ek+1(m
′

k+1). (2)

The vector X
↓

k,k+1 contains NGk
samples of the signal Xk,k+1

taking every (Lk/Lk+1)-th sample, because of the sparsity factor

Lk/Lk+1 of the adaptive subfilter Gk

„
z

L
k

L
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«
in Fig. 2. The

subband errors are given by

Ek(m
′

k) = Dk(m
′

k −ΔDk
)− Xk,k(m

′

k −
Δk
Lk
)TGk(m)

− X
↓
k−1,k(m

′

k −
Δk−1
Lk

)TGk−1(m)

− Xk+1,k(2m
′

k −
Δk+1
Lk

)TGk+1(m), (3)

and the delays ΔDk
are required in order to match the delays intro-

duced by the different length analysis filters of desired signal.
Observe that the adaptation algorithm operates at the lowest sub-

band rate, which results in savings in the computational complexity
when compared to the fullband algorithm. To improve the conver-
gence rate of the adaptation algorithm for colored noise input signal,
each step-size of Eq. (2) is made inversely proportional to the sum
of the powers of the input signals of the filters responsible for the
corresponding error.
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Fig. 3. Adaptive structure of Fig. 1 with polyphase representation of
the non-uniform filter bank.

3. OPTIMAL COEFFICIENTS

Assuming that selective analysis filters are used (such that their fre-
quency responses only overlap with those of the adjacent subbands),
the coefficients of the critically-sampled structure of Fig. 2 are iden-
tical to those of the sparse structure of Fig. 1.

The sparse subfilter Gk(z
Lk) of Fig. 1 can be represented in

terms of delayed versions of its lk polyphase components [6], result-
ing in lk subfilters of sparsity L0. Denoting as Gk(z) the vector that
contains these lk polyphase components, that is:

Gk(z) =
ˆ
Gk,0(z) Gk,1(z) · · · Gk,lk−1(z)

˜T
(4)

and bG(z) the vector formed by the polyphase vectors of theM sub-
filters Gk(z):

bG(z) =
ˆ bG0(z) bG1(z) · · · bGL0−1(z)

˜T
=

ˆ
G0(z)

T
G1(z)

T · · · GM−1(z)
T

˜T
, (5)

the subband structure of Fig. 1 can be redrawn in terms of the L0
components of bG(z), as shown in Fig. 3. In this figure, Hp(z) is
the L0 × L0 matrix that contains the polyphase components of the
analysis filters, given by

Hp(z) =
ˆ

H0(z)
T

H1(z)
T · · · HM−1(z)

T
˜T
, (6)

where Hk(z) is the lk × L0 matrix with the i-th row formed by the

L0 polyphase components of z−(Δk+iLk)Hk(z).
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From Fig. 3, the transfer function implemented by the non-
uniform subband adaptive structure of Fig. 1 is given by

T (z) = bG(zL0)THp(z
L0)

ˆ
1 z−1 · · · z−(L0−1)

˜T
.
(7)

In a system identification application, the coefficients of the sub-
filters Gk(z

Lk) are adapted such as to model an unknown FIR sys-
tem. The unknown system transfer function, denoted here by S(z),
can be expressed in terms of its L0 polyphase components as

S(z)=
ˆ
S0(z

L0) S1(z
L0) · · · SL0−1(z

L0)
˜
2
6664

1
z−1

...

z−(L0−1)

3
7775.

(8)
From Eqs. (7) and (8), the subband structure models exactly the FIR
system S(z) when

bG(z)THp(z) =
ˆ
S0(z) S1(z) · · · SL0−1(z)

˜
. (9)

Pos-multiplying both sides of the Eq. (9) by a matrixFp(z) such that
Hp(z)Fp(z) = z

−Δp
I, with I the identity matrix andΔp a positive

integer, we obtain the following relation among the coefficients of
the sparse subfilters and the coefficients of the unknown system:

bG(z)z−Δp = ˆ
S0(z) S1(z) · · · SL0−1(z)

˜
Fp(z). (10)

The matrix Fp(z) corresponds to the type-2 polyphase matrix of the
synthesis filters that result in perfect reconstruction [6].

The optimal k-th subfilter G∗
k(z) is then given by

G∗
k(z) =

lk−1X
i=0

z−iGk,i(z
lk), (11)

where Gk,i(z) are related to bGk(z) through Eqs. (4) and (5).

4. STEADY-STATEMEAN-SQUARE ERROR

In this section we present a mean-square analysis, which takes into
account the error caused by the assumption of non-overlaping anal-
ysis filters in the algorithm derivation.

In order to simplify the notation, we define the NGi
× 1 vectors

with the delayed subband signals:

bXi,j(m) = Xi,j(m−
Δi
Li,j

), (12)

bX↓
i,j(m) = X

↓
i,j(m−

Δi
Li,j

). (13)

For the general case (not assuming that non-adjacent analysis
filters do not overlap), the desired signal at the k-th subband can be
expressed in terms of the optimal coefficients G

∗
k as

Dk(m
′

k −ΔDk
) =

k−1X
i=0

bX↓

i,k(m
′

k)
T
G

∗
i (14)

+
M−1X
i=k

bXi,k(
Lk
Li
m

′

k)
T
G

∗
i + Vk(m

′

k).

Denoting as D(m) the vector formed by the desired signals of the
M subbands at times lkm−ΔDk

, it can be written as

D(m) = X(m)G∗ +V(m), (15)

where G
∗ contains the optimal subfilter coefficients, V(m) contains

theM subband residual modeling errors at time lkm, and X(m) is
the matrix with the input subband signals whose k-th row is given
by

[X(m)]k = [ bX↓

0,k(lkm)
T · · · bX↓

k−1,k(lkm)
T bXk,k(lkm)

T

bXk+1,k(2lkm)
T · · · bXM−1,k(2

M−1−klkm)
T ]. (16)

Considering only overlaping of adjacent subbands, the vector
formed by theM subband output signals of the non-uniform struc-
ture at time lkm can be written as

Y(m) = bX(m)G(m), (17)

where bX(m) is the matrix with the input signals of the adaptive
filters, that is,

[bX(m)]k = [ 0
T · · · 0

T bX↓

k−1,k(lkm)
T bXk,k(lkm)

T

bXk+1,k(2lkm)
T

0
T · · · 0

T ]. (18)

Thus, the vector formed by the subband error signals is given by

E(m) = D(m)− Y(m)

= X(m)G∗ − bX(m)G(m) +V(m). (19)

For lossless filter banks, the total MSE is

ξ(m) =

M−1X
k=0

1

lk

lk−1X
q=0

E[E2k(m
′

k)]

≈

M−1X
k=0

E[E2k(lkm)] = E[E(m)E(m)
T ]. (20)

Substituting Eq. (19) in the above equation, assuming that the resid-
ual errors have zero mean and that, after convergence, E[G(∞)] ≈
G

∗, we obtain

ξss = ξ(∞) ≈ G
∗T

ΦG
∗ + σ2v, (21)

where

Φ = E[(X(m)− bX(m))(X(m)− bX(m))T ] (22)

and σ2v is the variance of the measurement noise. The k-th row of
the matrixX(m)− bX(m), given by

[X(m)− bX(m)]k = [ bX↓

0,k(lkm)
T · · · bX↓

k−2,k(lkm)
T

0
T · · · 0

T bXk+2,k(2lkm)
T · · · bXM−1,k(2

M−1−klkm)
T ],

(23)

contains the components of the k-th subband input signal in the
bands that are non-adjacent to the k-th subband. Therefore, the ma-
trix Φ is formed by the correlation matrices of non-adjacent subband
signals. Such matrices can be written in terms of the coefficients of
the analysis filters Hk(z) and of the input autocorrelation function,
since

E
h bXi,j(m

′

j)bXr,s(m
′

s)
T

i
= bHi,jRxx

bHT
r,s, (24)

and
E[bXi,j(m

′

j)bX↓
r,s(m

′

s)
T ] = bHi,jRxx( bH↓

r,s)
T . (25)

In the above equations, Rxx is the input auto-correlation matrix,bHi,j contains the coefficients of Hi(z)Hj(z) shifted to the right by
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Lj positions from one row to the next one, with the first non-zero

element of the first row at position Δi+1, and bH↓
i,j is similar tobHi,j but with a shift of Li positions from one row to the next one.

For selective analysis filters, the adaptive coefficients will con-
verge to approximately the optimal coefficients of the sparse struc-
ture. Hence, the vector G

∗ will contain approximately the coeffi-
cients of the filtersG∗

k(z) of Eq. (11).
From (21), the steady-state MSE of the non-uniform subband

structure will be, in general, larger than the measurement noise vari-
ance σ2v , because of the residual aliasing not canceled in the simpli-
fied structure. The corresponding increase in the steady-state MSE
is related to the stopband attenuation of the analysis filters, and can
be estimated from the following simplified expression:

ξss ≈ λmean(Φ)|G
∗|2 + σ2v, (26)

where λmean(Φ) is the mean of the eigenvalues of the matrix Φ.
Observe that such simplified estimate for the excess in the MSE does
not require knowledge of the optimal coefficients, but only of the
squared norm of the corresponding vector, which can be easily esti-
mated. It is also a function of the coefficients of the analysis filters
and of the input autocorrelation sequence.

5. EXPERIMENTAL RESULTS

In this section, we compare the theoretical and experimental steady-
state mean-square errors obtained in the identification of an FIR
system of length NS = 128. The coefficients of the unknown
system were obtained randomly (white-noise with uniform distribu-
tion). The simulations were performed with both white and colored
input signals. The colored input signal was generated by passing a
gaussian white noise through a first-order IIR filter having its pole
at z = 0.9. The proposed non-uniform subband structure was sim-
ulated with M = 4 subbands, employing 3-level octave-band tree
structured filter banks with prototype filters [7] of order NH3

= 15,
31 and 63. The theoretical estimates of the steady-state MSE (ξss
in Eqs. (21) and (26)) as well as the experimental MSE evolution
obtained with the three prototype filters are shown in Figs. 4 and 5
for white and colored noise inputs, respectively. From these figures,
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Fig. 4. MSE evolution and theoretical steady-state MSEs for white
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we observe that the theoretical steady-state mean-square values are
in good agreement with the experimental results.
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6. CONCLUSION

In this paper, we derived a critically sampled adaptive subband struc-
ture that employs a non-uniform filter bank to decompose the input
signal. The adaptation is performed at the lowest sampling rate, us-
ing an LMS-type algorithm with step-size normalization. A conver-
gence analysis of the proposed adaptive algorithm was presented,
from which the steady-state MSE, with the residual aliasing in the
subband structures taken into account, could be estimated. Simula-
tion results confirmed the theoretical analysis results.
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