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ABSTRACT
This paper presents a procedure to remove the border effect from
interpolated finite impulse response (IFIR) and interpolated
Volterra adaptive filters using the LMS algorithm. The used
approach permits to reduce the steady-state mean-square error
(MSE) of such structures. In situations that the border effect is
important, the obtained improvement is noticeable. In addition, the
computational burden required to implement such a procedure is
slight. Simulation results confirm the effectiveness of the proposed
approach.

Index Terms—Adaptive filters, adaptive signal processing,
interpolation, least-mean-square methods, nonlinear filters.

1. INTRODUCTION
The interpolated finite impulse response (IFIR) filter is an
approach aiming to implement effectively FIR filters [1]. Starting
with the work of Neuvo et al. [1], much research effort has been
carried out about IFIR filters, being successfully used in a variety
of applications, such as line echo canceling [2], active control [3],
among others. Such a filter is implemented by cascading a sparse
FIR filter with an interpolator filter. The former reduces the
number of coefficients while the latter recreates the removed
coefficients by interpolation. The adaptive version of an IFIR
(AIFIR) filter represents an alternative solution to the conventional
adaptive FIR filters, particularly for applications in which a large
number of taps is required [2]. In nonlinear applications, which are
coefficient demanding, the need for reducing the computational
burden points to the use of Volterra filters [4], [5]. In this case, to
consider sparsity and interpolation is even more interesting
because of the exponential coefficient reduction obtained by using
interpolated structures [4], [5]. However, a drawback of such
structures is its higher steady-state mean-square error (MSE) as
compared with that of the standard implementation. This higher
MSE has two main causes: the sparsity effect of the structure itself
and the imperfections resulting from the equivalent filter
composition, which is obtained from the convolution between the
sparse and interpolator filters. The former is inherent to the
interpolated approach and there is no means to reduce its impact.
The latter is due to the convolution of two FIR filters of dimension
M and N, resulting in an ( 1)-dimensional M N  filter. In this
way, the equivalent interpolated structure presents a border effect
and a larger memory size [5]. Specifically, the border effect is the
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second source of performance loss. Thus, this work presents a
procedure to implement interpolated adaptive filters (using the
LMS algorithm) mitigating such an effect, which results in a
significant performance improvement at the expense of a slight
computational complexity overhead.

This paper is organized as follows. Section 2 introduces the
general concept and mathematical description of interpolated FIR
filters. Section 3 presents the procedure used for removing the
border effect in IFIR structures. Section 4 extends such a
procedure to interpolated Volterra filters. Section 5 shows some
simulation results ratifying the good performance of the proposed
approach. Finally, Section 6 concludes this paper.

2. IFIR FILTERS

Fig. 1 shows the block diagram of an IFIR filter. In this figure, sw
represents the coefficient vector characterizing the sparse filter and

T
0 1 1[ ]Mi i ii  denotes an M-dimensional vector representing

the interpolator filter. The input signal ( )x n  and its interpolated
version ( )x n  are related by
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0
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The sparse filter output is given by

sˆ( ) ( )y n x n w                                      (2)

where  denotes the convolution operator.

ˆ( )y n( )x n( )x n i sw

Fig. 1. Block diagram of an IFIR filter.

The factor determining the IFIR filter sparsity is termed
interpolation factor, denoted by L  [6]. The sparse filter vector sw
is obtained by setting to zero ( 1)L  samples from each L
consecutive ones from the original full vector

T[ (0) (1) ( 1)]w w w Nw , with N  representing the memory
size of the original filter. Thus, we have

T
s s{ (0) 0  ( ) 0  [( 1) ] 0  0}w w L w N Lw          (3)

with the corresponding input vector given by
T( ) [ ( )  ( 1)  ( 2)    ( 1)]n x n x n x n x n Nx .        (4)

In (3), sN  denotes the number of nonzero coefficients of the
sparse filter, expressed as

s
1 1N

N
L

                                      (5)
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where  represents the truncation operation. Then, considering
(3) and (4), one can rewrite (2) as

T
sˆ( ) ( )y n nx w                                      (6)

which is the sparse filter output in a vector form. Note that in (1)
and (6) the convolution operation is present. Now, defining an
( 1)N M N  interpolation matrix as
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and an ( 1) 1N M  extended input vector
T

e ( ) ( )  ( 1)    ( 2)n x n x n x n N Mx             (8)

we can rewrite (4) as
T

e( ) ( )n nx I x .                                      (9)

Thus, based on these definitions the output of the IFIR filter,
written as a matrix product, is given by

T T
e s e iˆ( ) ( ) ( )y n n nx Iw x w .                         (10)

Note from (10) that the output signal ˆ( )y n  is obtained from the
extended input vector e ( )nx  and the coefficient vector i sw Iw .
For instance, if we consider a 3 1  sparse filter with 2L  and

T[0.5  1  0.5]i  (linear interpolator [1], [6]), the sparse
coefficient vector is given by

T
s (0)  0   (2)w ww                             (11)

and the equivalent coefficient vector is
T

i 0.5 (0) (0) 0.5 (0) 0.5 (2)  (2) 0.5 (2) .w w w w w ww   (12)

Note from (12) that the center coefficient (boxed), coming from
(11), is recreated as the arithmetic mean of its two neighbors. The
underlined coefficients in (12) come from the convolution border
effect. Notice also the larger length of the equivalent filter.

3. IFIR FILTERS WITH REMOVED BORDER EFFECT
The border effect indicated in (12) often produces a higher MSE in
IFIR adaptive filters. Consider, for instance, the use of an IFIR
filter with 3N , 2L  and T[0.5  1  0.5]i  for modeling a FIR
filter with an exponential decreasing impulse response, typical in
several practical applications. In this case, the first coefficient in
(12) may have a significant value, originating a considerable
modeling error. To solve this problem, the equivalent coefficient
vector is changed to

T
i (0) 0.5 (0) 0.5 (2)  (2)w w w ww                   (13)

or equivalently
T

i 1 0 2 1(0)  (0) (2)  (2)i w i w i w i ww                     (14)

for a generalized interpolator with 3M  and coefficients
T

0 1 2[     ]i i ii . To obtain (14), we start by determining a
transformation matrix satisfying the following relation:

i iw Tw                                           (15)
with T  denoting the transformation matrix. By considering the
dimensions of the involved vectors [ 1N  for iw  and
( 1) 1N M  for iw ] and the transformation nature (row
permutation and elimination), the ( 1)N N M  transformation
matrix has a similar structure to a permutation matrix [7]

0 1 0 0 0
0 0 1 0 0

0 0 0 1 0

T .                             (16)

Now, substituting i sw Iw  into (15), we obtain

i sw TIw .                                        (17)

Note, from i sw Iw  and (17), that to obtain an IFIR filter with
removed border effect (RBEIFIR), the interpolation matrix is
replaced by

'I TI .                                           (18)
As a result, the input vector for the sparse filter in the RBEIFIR
implementation is given by

T T T( ) ( ) ( )n n nx I x I T x                            (19)
with

T( ) [ ( ) ( 1)  ( 1)]n x n x n x n Nx .                 (20)

From (19) and considering that T
0 1 2[     ]i i ii , one obtains

T
c( ) ( )   ( )   ( )n x n n x nx x                           (21)

where
T

c ( ) ( )  ( 1)    ( 3)n x n x n x n Nx                  (22)

1 2( ) ( ) ( 1)x n i x n i x n                                               (23)
and

0 1( ) ( 2) ( 1)x n i x n N i x n N .           (24)

Thus, to eliminate the border effect, we replace the sparse filter
input vector (4) by the new one (21). By considering the required
computational complexity, the computation of (23) and (24)
implies on incrementing 4 multiplications and 2 additions per
sample.

4. EXTENSION TO INTERPOLATED VOLTERRA
FILTERS

A Volterra filter is a nonlinear structure formed by P  filters in
parallel. A linear or first-order and several nonlinear blocks with
orders from 2 to P  form the structure of a Volterra filter [8]. The
interpolated Volterra filter is a reduced complexity implementation
of a standard Volterra one, using sparsity to that end [4], [5]. The
block diagram of such a structure is illustrated in Fig. 2, where

( )x n  is the input signal, ˆ( )y n  denotes the output signal, and i
represents the interpolator filter. The sparse Volterra filter is
denoted by Vsh  and its block structure is pointed out by the

dashed box, with each th -orderp  sparse block denoted by sph

with output given by ˆ ( )py n . Vectors ( )p nx  are the th -orderp
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interpolated input vectors. Since the first-order block of the
interpolated Volterra filter is equivalent to the IFIR filter, the input
vector for the first-order block 1( )nx  is the same as (4). The
remaining input vectors are obtained recursively by [5]

1 1( ) ( ) ( )p pn n nx x x .                             (25)

...... ...

( )x n 1( )x n

2 ( )x n

( )px n

1ˆ ( )y n

2ˆ ( )y n

ˆ ( )py n

ˆ( )y n
1sh

2sh

sph

i

Fig. 2. Block diagram of the interpolated Volterra filter.

The first-order sparse coefficient vector 1sh  has the same
structure as given in (3) and the remaining ones are obtained as
follows. The input-output relationship for each block of the
interpolated Volterra filter is given by [5]

T
e sˆ ( ) ( )p p p py n nx I h                               (26)

with 1I  obtained from (7) and

1 1p pI I I .                                    (27)

Vector 1e ( )nx  is determined from (8) and

e 1e ( 1)e( ) ( ) ( )p pn n nx x x .                       (28)
The border effect removing procedure for the interpolated Volterra
filter is the same as for IFIR filters just by changing the input
vector to that given in (21). Thus, for the first-order block the
results of Section 3 are used here. Considering however the
second-order block, the borderless second-order input vector is
obtained as

T T T T T T
2 ( ) ( ) ( ) ( ) ( ) ( ) ( ).n n n n n n nx x x I x I x I T x I T x

(29)
By considering the Kronecker mixed-product rule [8], [5] in (29),
we obtain

T T T T
2( ) [( )( )][ ( ) ( )]n n nx I I T T x x              (30)

resulting in
T T

2 2 2 2( ) ( )n nx I T x                                  (31)

with 2T T T , 2I I I , and 2( ) ( ) ( )n n nx x x  as the
second-order Volterra input vector. By using (31), the input-output
relationship for the borderless second-order block is given by

T
2 2 2 2 2sˆ ( ) ( )y n nx T I h                               (32)

resulting in the equivalent coefficient vector
2i 2 2 2sh T I h .                                     (33)

By evaluating (33) for the case 2L  and 3N , using the linear
interpolator T[0.5  1  0.5]i , and organizing the resulting vector
in a matrix form [5], we get

2i

(0,0) 0.5 (0,0) 0.5 (0,2) (0,2)
0.5 (0,0) 0.25 (0,0) 0.25 (0,2) 0.5 (0,2)

.
0.5 (2,0) 0.25 (2,2) 0.25 (2,0) 0.5 (2,2)

(2,0) 0.5 (2,0) 0.5 (2,2) (2,2)

h h h h
h h h h
h h h h

h h h h

H

(34)

Expression (34) is the equivalent second-order matrix with no
border effect and equivalent reduced memory size of N N . The
extension to higher order blocks is straightforward, resulting in the
following generalized equivalent coefficient vector:

i sp p p ph T I h                                        (35)

with 1p pT T T  and 1p pI I I .

5. SIMULATION RESULTS
In this section, some simulation results are presented in order to
illustrate the proposed procedure. The examples compare results
from a system identification problem [9], using interpolated
Volterra filters with and without border effect removal. For all
examples a white Gaussian input signal with variance 2 1x , a

linear interpolator T[0.5  1  0.5]i , and 2L  are used.

Example 1: In this example, the plant to be modeled is a decaying
exponential function for the first-order block and a decaying
exponential surface for the second-order one. The memory size is

11N  and both filters are adapted by using the LMS algorithm
with max.2 , where max  is the maximum value of the
step-size parameter for algorithm convergence (experimentally
obtained). The MSE results are shown in Fig. 3. Note from that
figure that the approach without border effect has a lower
steady-state MSE. Fig. 4 shows the first-order coefficients of the
plant and the steady-state equivalent ones for each structure.
Figs. 5 and 6 illustrate the second-order kernel shown as a surface
plot. Note that the matching between plant and estimated kernels is
better when the border effect is removed. In addition, a lower
memory size is required for the proposed approach.
Example 2: In this example, a second-order plant having larger
coefficient values in the center of the kernel is considered. In this
case, the coefficients arising from border effects are small. The
MSE curve is shown in Fig. 7. Note that in this case the
performance improvement is smaller than that obtained in
Example 1. This is due to the plant characteristics. The first-order
block curves are shown in Fig. 8 and second-order kernel surfaces,
in Figs. 9 and 10. In that case, because of the used plant
characteristics, the differences between model and estimated
kernels are less visible; however, noticeable differences in the
MSE curves are still verified.

6. CONCLUSIONS
In this work, a procedure to improve the MSE performance of IFIR
and interpolated Volterra adaptive filters has been discussed. Such
a procedure requires a slight increment on the computational
burden while producing a significant improvement on the MSE
performance of the interpolated filters. Simulation results attest the
effectiveness of the proposed approach.
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Fig. 3. Example 1. MSE curves (200 independent runs). (IV) Interpolated
Volterra filter. (BIV) Borderless interpolated Volterra filter.
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Fig. 4. Coefficient curves for the first-order block from Example 1.

Fig. 5. Superposition of second-order coefficient surfaces for Example 1.
(Solid surface) plant; (wireframe) interpolated Volterra filter with main
coefficients as the vertices indicated by black dots and the remaining ones
are recreated.

Fig. 6. Superposition of second-order coefficient surfaces for Example 1.
(Solid surface) plant; (wireframe) borderless interpolated Volterra filter
with main coefficients as the vertices indicated by black dots and the
remaining ones are recreated.
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Fig. 7. MSE curves for Example 2 (200 independent runs). (IV)
Interpolated Volterra filter. (BIV) Borderless interpolated Volterra filter.
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Fig. 8. Coefficient curves for the first-order block from Example 2.

Fig. 9. Superposition of second-order coefficient surfaces for Example 2.
(Solid surface) plant; (wireframe) interpolated Volterra filter with main
coefficients as the vertices indicated by black dots and the remaining ones
are recreated.

Fig. 10. Superposition of second-order coefficient surfaces for Example 2.
(Solid surface) plant; (wireframe) borderless interpolated Volterra filter
with main coefficients as the vertices indicated by black dots and the
remaining ones are recreated.
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