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ABSTRACT

It is shown that estimation accuracy of adaptive notch filters
(ANFs) can be increased by combining two techniques that
were previously used separately: automatic gain adjustment
and frequency debiasing. To achieve this goal one has to
solve a nontrivial problem of determining estimation delay
introduced by a variable-gain ANF filter.

Index Terms— adaptive filters, frequency estimation

1. INTRODUCTION

Consider the problem of extraction or elimination of nosta-
tionary complex sinusoidal signals (cisoids) s;(¢),i = 1,...,k
from noisy measurements y(t)

k
y(t) = 3 si(t) + v(t)
=1

t

sih) = a)e = o,k (1)
We will assume that the complex-valued amplitudes a;(t) and
real-valued instantaneous frequencies w;(t) € [—m, 7] are
slowly varying quantities, and that the measurement noise
v(t) is circular white.
For a single noisy cisoid (k = 1) the normalized steady state
version of the ANF algorithm presented in [1] can be written
down in the form

e(t) = y(t) — O3t -1)
a(t) CDF(t — 1) + poe(t)
B E*(t)ej@(t)
9(t) = Im {3‘*@1)}
(,/J(t + ]_) = @(t) - ")/og(t) @

The ANF algorithm (2) can be controlled by means of ad-
justing two user-dependent coefficients: the adaptation gain
Lo, 0 < p, < 1, which decides upon the speed of ampli-
tude tracking, and another adaptation gain 7,, 0 < 7, < po,
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which decides upon the speed of frequency tracking. A thor-
ough analysis of tracking properties of this algorithm (includ-
ing the proof of its statistical efficiency under certain fre-
quency variation scenarios) was presented in [1].

Using the technique described in [2], the multiple-frequency
version of (2) can be easily obtained by combining several
single-frequency algorithms into appropriately designed para-
llel-form or cascade-form structures.

A typical way of increasing tracking capabilities of adaptive
notch filters is by means of automatic gain/bandwidth tuning
[3],[41, [5] (see [5] for an interesting overview of different ap-
proaches to this problem). Irrespective of tuning principles,
all solutions mentioned above have the same main feature -
they try to balance the estimation bias and the estimation vari-
ance. In order to achieve this, they increase adaptation gains
when signal parameters change faster, and decrease adapta-
tion gains when signal parameters slow down. The solution
proposed recently in [6] is based on recursive prediction er-
ror (RPE) minimization. The structure of the self-optimizing
ANF algorithm derived in [6] is identical with (2) except that
the constant gains i, and 7, are replaced with time-varying
gains (t) and ~y(t) adjusted automatically by an external gain
tuning loop.

An entirely different technique of increasing estimation accu-
racy of ANF filters was proposed in [7]. It was shown that
frequency biases, which arise in ANF algorithms, can be sig-
nificantly reduced by incorporating in the adaptive loop an
appropriately chosen decision delay. Such delay is accept-
able in many practical applications. The proposed solution is
a cascade of two filters. The “pilot” ANF filter, given by (2),
provides preliminary (biased) frequency estimates. The esti-
mates yielded by the pilot algorithm are fed into the following
“frequency-guided” ANF filter

gt—1,) = ylt—1,)—e“Dst—1,-1)
5(t—1,) = W5t —1,—1)+ poe(t — 1)
lo = intfue/v,] (3

which does not estimate signal frequency on its own, and
which operates on a delayed data sequence; int[z] denotes
an integer number that is closest to x.
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Frequency debiasing improves tracking performance of ANF
algorithms and increases their robustness to the choice of de-
sign parameters.

We will show that if the two techniques mentioned above
— automatic gain tuning and frequency debiasing — are used
jointly, the estimation accuracy of ANF filters can be further
increased.

2. EVALUATION OF AN ESTIMATION DELAY

2.1. Constant gain case

Tracking properties of (2) were analyzed in [1] in the special
case of a constant-modulus cisoid (|s(t)| = a, Vt) and con-
stant adaptation gains. Using the approximating linear filter
(ALF) technique, developed by Tichavsky and Héndel [8], it
was shown there that the steady state relationship between the
mean path of frequency estimates @(t) = E[@(t)|w(s), s < ]
and the true frequency trajectory w(t) can be approximately
described by the following linear equation

@(t) = F(g~w(?) “4)

_ (1 — 50)61 -t
1—(Ao+00)g 1+ Aog™2

where ¢~! denotes the backward shift operator and A\, = 1 —
Hos 50 =1- Yo-

Since, for small values of u, and ~,, F(q’l) is a lowpass
filter, it introduces the lag effect: the mean trajectory of fre-
quency estimates yielded by the ANF filter (2) can be re-
garded a delayed version of the true trajectory. As it was
shown in [7], a pretty good approximation of this delay can
be obtained using the formula I, = int[7,], where 7, de-

notes the so-called nominal (low-frequency) delay of the filter
F(e 7€) = A(£)ei?(©)

do(§) P&) _ Ho

T = — lim —=>* = — lim —* = — 5
e T =5, O

F(g™)

where & denotes the standard Fourier-domain frequency vari-
able.

2.2. Variable gain case

When the adaptation gains are time-varying the estimation de-
lay 7 is also a time-dependent quantity. Quite obviously, it
cannot be evaluated using the steady state formula (5), based
on frequency domain concepts. In order to derive the time-
varying counterpart of (5), note that equation (4) can be rewrit-
ten in the form

o(t) = Z F@)w(t —1) (6)

where f(i) = Z7Y[F(271)] is the impulse response of the
filter F(q™1).

Denote by w(t) = w(t) — w(t — 1) the one-step frequency
change and consider the situation where the instantaneous fre-
quency varies linearly with time (linear chirp signal), that is
w(t) = at or equivalently w(t) = «, Vt. Then, according
to (6), it holds that w(t) = at —ad o~ if (i) = w(t — 7o)

where
o0

o= if(i) @
i=1

Using elementary properties of the Z-transform one can show
equivalence of (5) and (7). Hence, the nominal delay, origi-
nally defined in the frequency domain, can be also justified
using the time-domain concepts — 7, can be regarded a mean
(steady state) delay of the estimated chirped frequency. Using
such interpretation the concept of an estimation delay can be
easily extended to the time-varying case, leading to the fol-
lowing definition

(t) = {‘“(t)_w(t)}
@ w(t)=at
Suppose that the true signal evolves according to
s(t) = (1 + Ar(t)e?* st — 1)

where the quantity Ar(t) is real-valued and denotes small rel-
ative changes in the magnitude of the cisoid. Note that, unlike
the constant-modulus model adopted in [1], such description
admits both amplitude and frequency changes. Furthermore,
suppose that both adaptation gains are kept at constant levels
Lo and v, until the instant ¢,, when the gain-tuning mecha-
nism is switched on. We will assume that ¢, is large enough
to guarantee that the ANF algorithm reaches its steady state
behavior. The following proposition summarizes the main re-
sult of the paper

= [w(t> - CI}<t)]w(t)51 3

Proposition
The estimation delay 7(¢) introduced by the ANF algorithm
(2) equipped with time-varying adaptation gains can be eval-
uated recursively using the following equations
n(t) = [ —p®n(t—1) = [1 = u)r@)
Tt+1) = [I=y@Or@) Ot -1)+1 )
t >t

with initial conditions set to 1(t5) = 0, Y(to) = Yo, T(to) =
to/ Yo and n(to) = (1o — 1)/7o-
Derivation: See Appendix.

3. IMPROVED ANF ALGORITHM

As argued in [6] setting v = u? may be a good way of re-
ducing the number of design degrees of freedom of an ANF
algorithm from two (i, y) to one (u). Let

a if r<a
[96]2: z if a<zxz<b
b if z>b
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The debised version of the self-optimizing ANF filter pro-
posed in [6] can be summarized as follows

pilot filter:

e(t) = y(t) — *W5(t — 1)
C(t) = =[x (13t — 1) + $(t — 1)
(1) = e(t) = [1 = p(t = D))
3o (1)
plt) = Im{m [C(8) + e (H)x(#)
e* ()Yt —1)
N ]}
r(t) = Br(t —1) + |¢(t)]?
u(t) = [u(t —1)— W]

3(t) = W3t — 1) + p(t)e(t)

Hmin

B e*(t)el®
o= |5
Gt +1) =a(t) — p?(t)g(t)
x(t+1) = x(t) — u(t)[29(t) + u(t)p(t)] (10)

computation of estimation delay:

n(t) = [1 = p(®)]n(t —1) = [1 — pt)]7(t)
T(t+1) = [1— @ 2@))r(t) + @)t — 1) +1
Ut +1) = [int[r(t + 1)] == (11)
frequency-guided filter:

k) = W5k — 1) 4 pu(k)&(k) (12)

where 0 < § < 11in (10) is the forgetting constant which de-
cides upon the estimation memory of the RPE estimator of ..
Note that the algorithm is equipped with two “safety valves”.
First, when the calculated value of ;1 exceeds its upper limit,
it is truncated to pimax; similarly, p is set to pmin Whenever
the calculated value becomes too close to zero. Second, the
computed value of [(¢) is constrained to the range [Imin, lmax]»
where linin = int[1/pmax] and lpax = int[1/pmin] are the
steady state estimation delays corresponding to the adopted
values of fimax and fimin, respectively.

The initial conditions should be set to {u(t) = o, n(t) =
(o — 1)/.“?)7 T(t) = 1/po, V t <t}

The inverse frequency mapping problem (k) — @(4), solved
in the second line of (12), may occasionally get underdeter-
mined, which happens when no value of i exists such that
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Fig. 1. True frequency changes (upper plot) and the mean
values of p(t) (middle plot) and I(¢) (lower plot) yielded by
the proposed ANF filter.

i — l(i) = k, or overdetermined, which takes place when
there are several values of ¢ such that ¢ — (i) = k. The first
difficulty can be overcome using linear interpolation, and the
second one — by means of averaging.

4. COMPUTER SIMULATIONS

The simulated signal consisted of a single noisy cisoid y(t) =
aed Zi=1(s) 4 y(t) with a constant amplitude @ = 1 and a
time-varying frequency. Four noise levels were considered
(02 =1,1/4/10,0.1 and 0.01 ) to check estimation efficiency
of the compared ANF filters under different SNR conditions
(SNR=0dB, 5dB, 10dB and 20dB, respectively). The forget-
ting constant 3 was set to 0.99 and the limiting values of p
were equal to piyin = 0.005 and pmax = 0.2, respectively.
Figure 1 shows evolution of the true instantaneous frequency
and evolution of the mean values of the adaptation gain p(t)
and estimation delay [(¢) yielded by the algorithm (10)-(12).
All averages were computed from the results of 50 simula-
tion runs, corresponding to different realizations of {v(t)}
(SNR=5dB). Frequency estimates observed in a typical simu-
lation experiment are displayed in Figure 2. Note how debi-
asing improves estimation accuracy of the pilot filter.

Table I shows comparison of the average mean-squared sig-
nal reconstruction errors yielded by the self-optimizing pilot
ANF filter (10), by the debiased frequency-guided filter (12)
and by four variants of the fixed-gain ANF filters. All re-
sults were averaged over time and 50 different realizations of
the measurement noise. Note that debiasing improves results
yielded by the pilot filter by approximately 27%, and that both
self-optimizing algorithms work better than any of the fixed-
gain algorithms.
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Fig. 2. True frequency changes (thick lines) and their esti-
mates (thin lines) obtained using the pilot ANF filter ((¢),
upper plot) and its debiased version ((t), lower plot).

%1071

I 0dB 5dB | 10dB | 20dB
pilot 0.471 | 0.182 | 0.070 | 0.011
debiased || 0.343 | 0.132 | 0.051 | 0.008
0.02 2455 | 2.359 | 2.327 | 2.312
0.04 0.559 | 0.354 | 0.288 | 0.261
0.06 0.504 | 0.195 | 0.097 | 0.056
0.08 0.621 | 0.207 | 0.076 | 0.022

Table 1. Average values of the signal reconstruction errors
observed for the pilot ANF filter, for the debiased frequency-
guided ANF filter and for constant-gain ANF filters with four
values of .

Appendix

Let AL(t) = &(t) — w(t) and AS(t) = 5(t) — s(t). Our
derivation of (9) will be based on the ALF approximation,
which means that we will examine dependence of A& (t) and
AS(t) on v(t), w(t) and Ar(t), neglecting higher than first-
order terms of all quantities listed above (including all cross-
terms).

Using the approximation e/2%(®) 2 1 4 jAG(t), which holds
for small frequency estimation errors, and neglecting all higher-
order terms mentioned above, one arrives at

AS() 2 A1) e?*DAS(E— 1) + jA()s(t) AD(¢)

—A@)BE)Ar(E) + u(t)o(t)

where A(t) = 1 — p(t).
Let Ay(t) = Im[AS(¢)/s(t)]. After dividing both sides of
the last equation by s(t), and taking imaginary parts, one ob-
tains

AP(t) = AOAY(E = 1) + AOAL(E) + p(t)=(t) - (13)

where z(t) = Im[v(t)/s(t)].

A similar technique can be used to cope with the frequency
update in (2), leading (after elementary but tedious calcula-
tions) to

g(t) = AL(t) + Ayt — 1) — z(t)

and consequently to

AB(t+1) = S(AB(L) — A(D)AB(t - 1)

+ y(@®)z(t) —w(t+1) (14)

Note that neither (13) nor (14) depends on Ar(t).

According to (8) it holds that 7(¢t) = —E[ADG(¢)|w(t) = 1].
Let n(t) = E[A¢(t)|w(t) = 1]. Taking expectations of both
sides of (13) and (14), and noting that the process {z(t)} is
zero-mean, one arrives at (9). The initial conditions corre-
spond to the steady state solution of (9) under u(t) = u, and

V(t) = Yo-
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