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ABSTRACT

This paper proposes a wavelet-packet-based (WPB) algorithm for ef-
cient identi cation of sparse impulse responses with arbitrary fre-
quency spectra. The discrete wavelet packet transform (DWPT) is
adaptively tailored to the energy distribution of the unknown sys-
tem’s response spectrum. The new algorithm leads to a reduced
number of active coef cients and to a reduced computational com-
plexity, when compared to competing wavelet-based algorithms. Sim-
ulation results illustrate the applicability of the proposed algorithm.

Index Terms— Adaptive systems, echo cancellation, sparse im-
pulse response.

1. INTRODUCTION

One of the main challenges in adaptive ltering is to deal with a
large number of coef cients, which causes a high computational
complexity and a low convergence speed. For sparse impulse re-
sponses, however, the signi cant coef cients of the response to be
identi ed (those that are larger than a speci ed threshold) can be
detected prior to adaptation. Then, only a small number of coef -
cients must be adapted, reducing the computational complexity and
increasing the speed of convergence of the adaptive algorithm.

Someworks have shown improvements in the convergence speed
of adaptive ltering algorithms when implemented in the wavelet
transform (WT) domain, as compared to the implementations in the
time domain [1,2]. In these works, the WT has been used only to re-
duce the time correlation of the input signal. The important wavelet
temporal hierarchy was not utilized. Other works aim at the reduc-
tion of the number of coef cients that are effectively adapted [3–5].
From these, [4] and [5] make use of the wavelet temporal hierarchy.
In [4], two short adaptive lters are used, one in the partial Haar do-
main to estimate the impulse response bulk delay and one in time
domain to adapt over a time window centered about the delay pre-
viously estimated. As the bulk delay is estimated from the location
of the peak of the impulse response, this approach is effective when
the unknown sparse response has only one nonzero region. The ap-
proach in [5] uses the coef cients of a selected scale of the wavelet
transform as a set of control coef cients which are always adapted.
The control coef cients are compared with a threshold to determine
the active ones. Then, the signi cant coef cients of the remaining
scales are determined to be those corresponding to the signi cant co-
ef cients in the control scale according to the temporal hierarchy of
the wavelet transform. This approach works with the entire impulse
response. Thus, it can be used to identify sparse responses with more
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than one active region. One limitation of the technique proposed in
[5] is that it is designed for sparse responses which are rich in fre-
quency content. This is mainly because of the need for the choice of
a xed control scale. As a consequence, the technique may lead to
poor results for some impulses responses. Examples can be found,
for instance, among the typical responses included in [6].

Wavelets divide the frequency band in subbands that enhance
the low frequency components of a signal. Wavelet packets gener-
alize the wavelet theory, allowing ef cient frequency-domain repre-
sentations of signal with any spectral content. Thus, wavelet packet
expansions can be tailored to the frequency spectrum of the signal
[7, 8].

This paper proposes a wavelet-packet-based solution to the iden-
ti cation of sparse impulse responses. The derivation of the new
technique had the following objectives: 1) To enable the identi ca-
tion of sparse systems with impulse responses having any pro le of
energy distribution in frequency; 2) To reduce the number of adap-
tive coef cients to levels close to the actual number of nonzero sam-
ples of the response to be identi ed; 3) To keep the computational
complexity at levels compatible with the competing algorithms. The
resulting algorithm incorporates the design of the wavelet packet
structure in the adaptive process. The choice of subbands for the
structure are based on estimates of the energy content of the un-
known response in each candidate subband. The frequency bands
emphasized by the structure are then tailored to the spectrum of the
response to be identi ed. The adaptive design strategy leads to a re-
duced number of active coef cients, as thus to a low computational
complexity. Simulation results illustrate the effectiveness of the pro-
posed technique.

The paper is organized as follows. Section 2 presents the pro-
posed strategy for the on-line de nition of the DWPT structure and
describes the adaptation process. Section 3 compares the computa-
tional complexity of the proposed technique with that of [5]. Sec-
tion 4 presents simulation results as Section 5 concludes the paper.

2. ADAPTATION STRATEGY

The proposed adaptation strategy is composed of two phases. Phase 1
includes the construction of the DWPT, a rst reduction in the num-
ber of active coef cients and adaptation of these coef cients. Phase 2
is dedicated to the activation or deactivation of coef cients and to
the adaptation of the active coef cients for the DWPT de ned in
Phase 1.
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2.1. Phase 1: Construction of the DWPT

This section describes the construction of the DWPT, which is schemat-
ically depicted in Fig. 1 for a three-level transform. In this gure
ỹ(n) (output of the adaptation system) is the estimate of the desired
signal y(n), which is the output of the unknown system, and e(n) is
the error between the desired signal and its estimate ỹ(n).

Given an N − 1 input vector x(n) with N = 2M , the rst
step in Phase 1 is to transform x(n) using a partial DWPT with
just one level. This is done by two lters HL (low pass) and HH

(high pass). The twoN/2− 1 transformed vectors are denoted zH1

and zL1
, where H and L stand for high and low frequency bands,

respectively, and the subscript 1 indexes the DWPT level.
The next step is called the rst adaptation interval (AI1), and

is itself comprised of three steps. In the rst step, two N/2-long
adaptive lters with weight vectors wH1

and wL1
are adapted for

some iterations. This generates a set of rough estimates of the opti-
mum weights. In the second step, the weights in wH1

and wL1
are

compared against a threshold. Those larger than the threshold are
considered to be active weights. The third step is a new adaptation
cycle with several iterations in which only the active weights just de-
termined are adapted. These active weights now form vectors w̃H1

and w̃L1
, which are excited by the pruned signal vectors z̃H1

and
z̃L1

. This concludes the adaptation interval AI1, which is realized
only once for the entire identi cation process.

The third step of Phase 1 generates the next level of the DWPT,
in which only one of the last set of subbands in again subdivided.
In order to decide which subband will be subdivided, the portions of
the sparse response’s energy in each subband are estimated from the
weights of w̃H1

and w̃L1
. The band with more energy is subdivided.

The adaptive lter weights corresponding to the lower energy sub-
band are migrated into a new adaptive vector w̃a, which is excited
by signal vector z̃a with the corresponding signal samples. Weight
vector w̃a will always be adapted from this point on. The higher
energy subband is subdivided by a new set of lters HL and HH .
This leads to new transformed signal vectors z̃H2

and z̃L2
at the

output of the second level of the DWPT and corresponding weight
vectors w̃H2

and w̃L2
. In this third step no adaptive weights are

deactivated. After a new adaptation interval (AI), a new decision is
made about which subband will be split, and the process described
in this paragraph is repeated for the new level of the DWPT until the
complete DWPT structure is constructed. Fig. 1 illustrates a possible
structure forM = 3 (N = 8). This concludes Phase 1.

2.2. Phase 2: Adaptation

In this phase, the adaptive weights de ned by the DWPT constructed
in Phase 1 are iteratively adapted and activated/deactivated accord-
ing to the temporal hierarchy of the DWPT. Fig. 2 illustrates this
temporal hierarchy for a 5-level DWPT (M = 5). The horizon-
tal direction shows the distribution in time. The vertical direction
shows the 5 levels (m = 1, . . . , 5). Each rectangle corresponds to
the region of greater in uence of a transformed coef cient. As an
illustration of the temporal hierarchy, the dark rectangles in Fig. 2
belong to the set of coef cients in the same temporal hierarchy of
element (3,2) (marked with *).

In this phase, the WPB algorithm uses the DWPT to process the
input signal x to determine the elements of the reduced transformed
vector z̃a that will excite the adaptive lter with weight vector w̃a.

Phase 2 proceeds iteratively as follows. At the beginning of the
phase or whenever the levelm is equal to 1, the non-signi cant coef-
cients (smaller than the threshold) in level 1 are deactivated. Then,
the coef cients of levelM −1 in the same temporal hierarchy of the
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Fig. 1. Block diagram with 3 levels.
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Fig. 2. Hierarchic structure of the DWPT-Haar.

active coef cients of levelM are activated. For other levelsm �= 1,
the small adaptive weights of level m are deactivated and the adap-
tive weights of level m − 1 in the same temporal hierarchy of the
active weights of level m are activated. The levels m are continu-
ously cycled in regressive order (M − 1, . . . , 1) starting at m = 1.
For each value of m, the adaptive weight activation/deactivation at
levelsm andm−1 is followed by an adaptation interval for adaptive
weights updating.

2.3. Adaptive Filtering

The algorithm WPB can be applied with any adaptive algorithm.
Here we follow [5] and present the adaptation strategy for the nor-
malized least mean squares (NLMS) algorithm. Fig. 3 shows a typ-
ical block diagram of the adaptive system for Phase 1 of the WPB
algorithm.
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Fig. 3. Block diagram of the 1st phase of WPB.

Considering the already de ned variables, the output of the adap-
tive system is given by ỹ(n) = z̃

T (n)w̃(n) where z̃(n) = [z̃T
a (n),

z̃
T
Lm

(n), z̃T
Hm

(n)]T , w̃(n) = [w̃T
a (n), w̃T

Lm
(n), w̃T

Hm
(n)]T , and

the error is given by e(n) = y(n) − ỹ(n). The weight updating
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equations are [5]:
w̃a(n + 1) = w̃a(n) + 2λ̃Λ−2

a (n)e(n)z̃a(n)
w̃Lm(n + 1) = w̃Lm(n) + 2λ̃λ−2

Lm
(n)e(n)z̃Lm(n)

w̃Hm(n + 1) = w̃Hm(n) + 2λ̃λ−2
Hm

(n)e(n)z̃Hm(n)

where Λ2
a(n) is a diagonal matrix whose elements (k, k) are esti-

mates of the power of the transformed input signal za. The diagonal
element λ2

am
(n) is determined through the exponential averaging

[5] λ2
am

(n) = (1 − λ)λ2
am

(n − 1) + λz2
am,1

(n), 0 < λ < 1,
wherem = 1, 2,−−−, (M ′ + 1) withM ′ < M being the level cor-
responding to the present adaptive interval. λ is a smoothing factor
that depends of the stationarity of the input signal, and zam,1(n) is
the rst element of the transformed input vector for levelm [5].

In Phase 2, the adaptive weight vector w̃a(n) contains the active
coef cients of all the levels, as illustrated in Fig. 4.
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−

Fig. 4. Block diagram for the 2nd phase of WPB.

Using NLMS, the desired and the error signals are given by
ỹ(n) = z̃

T
a (n)w̃a(n) and e(n) = y(n) − ỹ(n), respectively. The

weight update equation is

w̃a(n + 1) = w̃a(n) + 2λ̃Λ−2
a (n)e(n)z̃a(n),

where Λ2
a(n) is a diagonal matrix whose elements are estimates of

the input signal power.

3. COMPUTATIONAL COMPLEXITY

After each AI, a variable number of operations is performed to de-
cide the new subband splitting and to determine the signi cant co-
ef cients. This number is very small, as compared to the compu-
tational complexity of the complete identi cation, and can be ne-
glected in the analysis of the computational complexity [5]. Consid-
ering a lter bank withN = 2M coef cients implementing low-pass
and high-pass Haar lters, de ning an operation as a multiplication
or an addition, and de ning Ñ as the number of weights effectively
adapted, the computational complexity of Phase 1 of the WPB algo-
rithm as a function of the number of levels is given by:

1 level: (4Ñ + 13) operations and 2 divisions;
2 levels: (4Ñ + 21) operations and 3 divisions;
(M − 1) levels: (4Ñ + 8M − 3) operations andM divisions.

In Phase 2, the complete DWPT must be considered. ForM lev-
els, the DWPT-Haar requires 4M operations, the normalization for
M levels requires 4(M + 1) operations and the adaptive weight up-
dating requires (4Ñ+1) operations and (M+1) divisions. Thus, the
computational complexity of Phase 2 of the WPB-Haar algorithm is
(4Ñ + 8M + 5) operations and (M + 1) divisions. Equivalent pro-
cessing using the technique in [5] requires (4Ñ + 8M) operations
and M divisions (including the ltering operation by the adaptive
lter).
The calculations above did not include the comparisons with the

threshold whenever a decision to deactivate coef cients is required.
The number of such comparisons is variable, depending on the num-
ber of active coef cients in each level and at each AI.

4. SIMULATION

This section compares results obtained using the proposed WPB al-
gorithm with results obtained using the Haar-Basis (HB) [5], Haar
TD-LMS (wavelet transformed NLMS) and NLMS (time-domain)
algorithms. The simulations use sparse echo channel models from

[6]. The detection threshold used was TH = λfa

r
λ̃λ̃(k)

λ̃2

δ
(k)
[5], where

λ̃(k) = (1 − λ̃)λ̃(k − 1) + λ̃e2(k) is an estimate of the current
value of E[e2(k)]. λfa = 3, 86 and λfa = 0, 77 were used in
Phase 1 and Phase 2 of WPB, respectively. The algorithm HB uses
the probability of false alarm Pfa = 0, 01 (1%), which corresponds
to λfa = 2, 57 for a Gaussian distribution about the mean.

In Phase 1 of WPB, the AI’s were de ned to facilitate the con-
struction of the DWPT. The AI1has to different adaptation intervals.
In the rst band splitting, the AI was set to 6000 iterations. The se-
lection interval within AI1had 2000 iterations. All remaining AI’s
intervals of Phase 1 were set to 1

16λ̃
iterations. In Phase 2 of WPB,

the AI was the same used for HB in [5], given by AI = 1/4λ̃,
where λ̃ is the NLMS step size.

Because the value of the smoothing factor λ was not speci ed
for algorithm HB in [5], λ = 0, 001 was used in all HB algorithm
implementations. This value led to the simulation results shown in
[5]. The control set used for the HB algorithm corresponded to level
3 (parameter λ = 7 in [5]).

The input x(n) was generated using [5, Eq. (29)]. The interfer-
ence noise power was −40dB. The step sizes used were λNLMS =
1
8
for the NLMS algorithm, λTD−LMS = 1

8N
(N = 512 is the num-

ber of adaptive weights) for the Haar TD-LMS algorithm, λ̂HB =
1

8N̂
for the HB algorithm and λ̃WPB = 1

10Ñ
for the WPB algo-

rithm, where N̂ and Ñ are the numbers of coef cients effectively
adapted by the HB and WPB algorithms, respectively. Fig. 5 and
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Fig. 5. NCEA of the models gm1.

Fig. 6 show the number of coef cients effectively adapted (NCEA)
by the HB and WPB algorithms for sparse responses gm1 and gm7

from [6]. It can be veri ed that WPB adapts less coef cients for
gm1 and about the same number of coef cients for gm7. Figs. 7
and Fig. 8 show the corresponding mean-square deviations (MSD),
normalized with respect to the squared norm of the response to be
identi ed. Both algorithms present comparable performances for
gm1 (with a slightly better performance the HB algorithm). For
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Fig. 6. NCEA of the models gm7.
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Fig. 7. Normalized MSD of the model gm1.

response gm7, however, the HB algorithm leads to a poor result,
even though gm7 satis es the requirement of rich frequency con-
tent. The results clearly show the robustness o the WPB algorithm
to the spectral properties of the sparse response to be identi ed. This
is a consequence of the adaptive construction of the DWPT.

5. CONCLUSION

This paper has presented a wavelet-packet-based (WPB) algorithm
for identi cation of sparse impulse responses with arbitrary spectral
composition. The proposed strategy adaptively constructs a wavelet-
packet structure tailored to the spectrum of the unknown sparse re-
sponse. The computational complexity of the new technique is com-
parable to the best existing wavelet-domain solution. The resulting
number of effectively adapted coef cients is very close to the mini-
mum. Simulation results have illustrated the robustness of the WPB
algorithm to the spectral content of the response to be identi ed.
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Fig. 8. Normalized MSD of the model gm7.
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