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ABSTRACT
This work proposes a low-complexity reduced-rank method
for general parameter estimation using an adaptive decima-
tion and interpolation scheme based on diversity-combining.
The new approach employs an iterative procedure to jointly
optimize the interpolation, decimation and estimation tasks
for reduced-rank parameter estimation. We describe joint it-
erative minimum mean-squared error (MMSE) design filters,
propose alternative decimation structures, including the opti-
mal decimation scheme, and develop low-complexity adap-
tive algorithms for the proposed structure. Simulations for
a block equalization application in doubly-selective channels
show the remarkable potential of the proposed scheme.

Index Terms— Adaptive estimation, reduced-rank tech-
niques, iterative methods.

1. INTRODUCTION
Reduced-rank estimation is a very powerful technique that
has gained considerable attention in the last few years due
to its effectiveness in low-sample support situations where
it can offer improved convergence performance at an afford-
able complexity [1]-[7]. The origins of reduced-rank parame-
ter estimation lie in the problem of feature selection encoun-
tered in statistical signal processing, which refers to a pro-
cess whereby a data space is transformed into a feature space,
that theoretically has the same dimension of the original data
space. It is, however, desirable to devise a transformation
in such a way that the data vector can be represented by a
reduced number of effective features and yet retain most of
the intrinsic information content of the input data [1]. In this
context, the existing reduced-rank methods attempt to obtain
a low-rank approximation of an observation data vector r(i)
with dimension M , that provides faster acquisition of the sig-
nal statistics usually leading to superior convergence and bet-
ter tracking performance. Amongst the available reduced-
rank methods, the designer may resort to techniques such
as the early eigen-decomposition approaches, the promising
multistage Wiener filter (MWF) [4],[5], the auxiliary-vector
filtering (AVF) [6] and the flexible adaptive interpolated FIR
filters with time-varying interpolators [7].

In this work, we propose a reduced-rank parameter es-
timator based on a novel adaptive diversity combined inter-
polation and decimation scheme that is simple, flexible, and
provides a remarkable performance advantage over existing
techniques. The novel approach consists of an iterative proce-
dure where the interpolation, decimation and estimation tasks
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are jointly optimized. In the novel scheme, the number of ele-
ments for estimation is substantially reduced, resulting in con-
siderable computational savings and very fast convergence
performance for tracking dynamic signals. A unique feature
of the proposed method is that, unlike existing schemes, it
does not rely on the full-rank covariance matrix R (that may
require a considerable amount of data to be estimated) be-
fore projecting the received data onto a reduced-rank sub-
space. The proposed reduced-rank approach skips the pro-
cessing stage with R and directly obtains the subspace of in-
terest through a set of simple interpolation and decimation
operations, while the estimator order does not scale with sys-
tem size. In order to compute the reduced set of parameter
estimators of the resulting method, we describe joint iterative
MMSE design filters for both interpolator and reduced-rank
estimators and propose alternative decimation structures for
the proposed scheme. We also develop low-complexity LMS
reduced-rank adaptive algorithms for the proposed structure.

This paper is organized as follows. The proposed reduced-
rank MMSE parameter estimation scheme is described in Sec-
tion 2. Sections 3 is dedicated to the derivation of the MMSE
filter expressions, whereas Section 4 is devoted to adaptive
LMS algorithms. Section 5 presents and discusses the simu-
lation results and Section 6 gives the concluding remarks.

2. PROPOSED ADAPTIVE REDUCED-RANK MMSE
ESTIMATION SCHEME

The framework of the proposed adaptive reduced-rank MMSE
parameter estimation scheme is detailed in this section. Fig.
1 shows the structure of the system, where an interpolator, a
decimator unit with several decimation branches and a reduced-
rank filter that are time-varying are employed.

Fig. 1. Proposed adaptive reduced-rank filter structure.
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The M × 1 received vector r(i) = [r(i)
0 . . . r

(i)
M−1]

T ,

where (·)T denotes transpose, is filtered by the interpolator

filter v(i) = [v(i)
0 . . . v

(i)
NI−1]

T , yielding the interpolated re-

ceived vector rI(i), which is then decimated by B decima-
tion patterns in parallel, leading to B different M/L × 1-
dimensional vectors r̄b(i), where L is the decimation factor.
The proposed architecture, that employs several decimation
branches in parallel to improve parameter estimation, is in-
spired by the use of receive diversity to improve the reliability
of wireless communications links [8]. The novel decimation
procedure corresponds to discarding M − M/L samples of
rI(i) of each set of M received samples with different pat-
terns, resulting in B different decimated vectors r̄b(i) with
reduced dimension M/L and then computing the inner prod-
uct of r̄b(i) with the M/L×1 vector of the reduced-rank filter

coefficients w̄(i) = [w̄(i)
0 . . . w̄

(i)
M/L−1]

T that minimizes the

squared norm of the error signal.

2.1. Adaptive Interpolation and Decimation Structure
The front-end adaptive filtering is carried out by the inter-
polator filter v(i) on the received vector r(i) and yields the

interpolated received vector rI(i) = VH(i)r(i), where (·)H

denotes Hermitian transpose and the M×M convolution ma-
trix VH(i) with the coefficients of the interpolator is given by
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Let us introduce an alternative way of expressing the vec-
tor rI(i), that will be useful when dealing with the different
decimation patterns, through the following equivalence:

rI(i) = VH(i)r(i) = �o(i)v∗(i), (2)

where the M × NI matrix with the received samples of r(i)
and that implements convolution is described by

�o(i) =

⎡
⎢⎢⎣

r
(i)
0 r

(i)
1 . . . r

(i)
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...
...

. . .
...

r
(i)
M−1 r
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M . . . r

(i)
M+NI−2

⎤
⎥⎥⎦ . (3)

The decimated interpolated observation vector r̄b(i) =
DbrI(i) for branch b is obtained with the aid of the M/L×M
decimation matrix Db that adaptively minimizes the squared
norm of the error at time instant i. The matrix Db is mathe-
matically equivalent to signal decimation with a chosen pat-
tern on the M × 1 vector rI(i), which corresponds to the re-
moval of M − M/L samples of rI(i) of each set of M ob-
served samples. In what follows, we present alternative deci-
mation schemes.

2.2. Adaptive Decimation Schemes
Here, we propose an optimal approach and three alternative
procedures for designing the decimation unit of the novel reduced-
rank scheme, where the common framework is the use of

parallel branches with decimation patterns that yield B deci-
mated vectors r̄b(i) as candidates. Mathematically, the signal
selection scheme chooses the decimation pattern Db and con-
sequently the decimated interpolated observation vector r̄b(i)
that minimizes |eb(i)|2, where eb(i) = d(i) − w̄H(i)r̄b(i) is
the error signal at branch b. Once the decimation pattern is
selected for the time instant i, the decimated interpolated vec-
tor is computed as follows r̄(i) = D(i)rI(i). The decimation
pattern D(i) is selected on the basis of the following criterion:

D(i) = Db when Db(i) = arg min
1≤b≤B

|eb(i)|2, (4)

where the optimal decimation pattern Dopt for the proposed
scheme with decimation factor L is derived through the count-
ing principle, where we consider a procedure that has M sam-
ples as possible candidates for the first row of Dopt and M −
m samples as candidates for the following M/L − 1 rows
of Dopt, where m denotes the mth row of the matrix Dopt,
resulting in a number of candidates equal to

B = M · (M − 1) . . . (M − M/L + 1)| {z }
M/L terms

=
M !

(M − M/L)!
. (5)

The optimal decimation scheme described in (4)-(5) is, how-
ever, very complex for practical use because it requires M/L
permutations of M samples for each symbol interval and car-
ries out an extensive search over all possible patterns. There-
fore, a decimation scheme that renders itself to practical and
low-complexity implementations is of great interest.

In order to consider a general framework for alternative
sub-optimal decimation schemes with decimation factor L
and using a finite number of B parallel branches let us de-
scribe the following structure:

Db =
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, (6)

where m (m = 1, 2, . . . , M/L) denotes the m-th row and
rm is the number of zeros chosen according to the following
proposed alternative decimation patterns:

A. Uniform (U) Decimation with B = 1. We make rm =
(m − 1)L and this corresponds to the use of a single
branch on the decimation unit.

B. Pre-Stored (PS) Decimation. We select rm = (m−1)L+
(b− 1) which corresponds to the utilization of uniform
decimation for each branch b out of B branches and the
different patterns are obtained by picking up adjacent
samples with respect to the previous and succeeding
decimation patterns.

C. Random (R) Decimation. We choose rm as a discrete uni-
form random variable, which is independent for each
row m out of B branches and whose values range be-
tween 0 and M − 1.
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The uniform approach of case A. corresponds to a single
branch on the decimation unit, however, one can exploit the
processed samples through a more elegant and effective way
with the deployment of several branches in parallel. In this
regard, the pre-stored decimation of case B. in which the de-
signer utilizes uniform decimation for each branch b and the
different patterns are obtained by choosing adjacent samples
with respect to the previous and succeeding decimation pat-
terns. This is particular advantageous since it is very simple,
consists of sliding patterns in parallel and can be easily imple-
mented by digital signal processors. The random decimation
scheme of case C. requires the use of a discrete uniform ran-
dom generator for producing the B decimation patterns which
are employed in parallel. In this regard, rm does not have to
be necessarily changed for each interval, but it can be used for
the whole set of data.

3. REDUCED-RANK JOINT ITERATIVE MMSE
FILTER DESIGN

Let us describe the MMSE filter design of the proposed reduced-
rank structure. The strategy, which allows us to devise solu-
tions for both interpolator and receiver, is to express the esti-
mated symbol x(i) = w̄H(i)r̄(i) as a function of w̄(i) and
v(i):

x(i) = w̄H(i)r̄(i) = w̄H(i)
(
D(i)VH(i)r(i)

)

= w̄H(i)
(
D(i)�o(i)

)
v∗(i) = w̄H(i)�(i)v∗(i)

= vH(i)
(�T (i)w̄∗(i)

)
= vH(i)u(i),

(7)

where u(i) = �T (i)w̄∗(i) is an NI × 1 vector, the M/L
coefficients of w̄(i) and the NI elements of v(i) are assumed
complex and the M/L×NI matrix �(i) is �(i) = D(i)�o(i).

The MMSE solutions for w̄(i) and v(i) can be computed
through the optimization problem whose cost function is

JMSE(w̄(i),v(i)) = E
[
|d(i) − vH(i)�T (i)w̄∗(i)|2

]
, (8)

where d(i) is the desired symbol at time index (i) and E[·]
stands for expected value. By fixing the interpolator v(i) and
minimizing (8) with respect to w̄(i) the interpolated Wiener
filter weight vector is

w̄(i) = α(v) = R̄−1(i)p̄(i), (9)

where R̄(i) = E[r̄(i)r̄H(i)], p̄(i) = E[d∗(i)r̄(i)], r̄(i) =
�(i)v∗(i) and by fixing w̄(i) and minimizing (8) with respect
to v(i) the interpolator weight vector is

v(i) = β(w̄) = R−1
u (i)pu(i), (10)

where Ru(i) = E[u(i)uH(i)], pu(i) = E[d∗(i)u(i)] and
u(i) = �T (i)w̄∗(i). The associated MSE expressions are

J(v) = JMSE(α(v),v) = σ2
d − p̄H(i)R̄−1(i)p̄(i), (11)

JMSE(w̄,β(w̄)) = σ2
d − pH

u (i)R−1
u (i)pu(i), (12)

where σ2
d = E[|d(i)|2]. Note that points of global mini-

mum of (8) can be obtained by vopt = arg minv J(v) and
w̄opt = α(vopt) or w̄opt = arg minw̄ JMSE(w̄,β(w̄)) and

vopt = β(w̄opt). At the minimum point (11) equals (12) and
the MMSE for the proposed structure is achieved. We remark
that (9) and (10) are not closed-form solutions for w̄(i) and
v(i) since (9) is a function of v(i) and (10) depends on w̄(i)
and thus it is necessary to iterate (9) and (10) with an initial
guess to obtain a solution. An alternative iterative MMSE so-
lution is sought via adaptive algorithms in the next section.

4. ADAPTIVE ALGORITHMS

We describe LMS algorithms [9] to estimate the parameters of
the reduced-rank filter, the decimation and the interpolator fil-
ter. Consider r(i) and the adaptive processing of the proposed
scheme, as in Fig. 1. With the aid of the convolution matrix
in (1), we compute rI(i) and then compute the decimated in-
terpolated observation vectors rb(i) for the B branches with
the aid of the decimation patterns Db, where 1 ≤ b ≤ B.
Once the B candidate vectors r̄b(i) are computed, we select
the vector r̄b(i) that minimizes the squared norm of

eb(i) = d(i) − w̄H(i)r̄b(i). (13)

Based on the signal selection that minimizes |eb(i)|2, we
choose the corresponding reduced-rank observation vector r̄(i)
and select the error of the proposed LMS algorithm e(i) as the
error eb(i) with smallest squared magnitude of the B branches

r(i) = rb(i) and e(i) = eb(i)

when b = arg min
1≤b≤B

|eb(i)|2. (14)

Given the reduced-rank observation vector r̄(i) and the de-
sired signal d(i), we consider the following cost function:

JMSE = |d(i) − vH(i)�T (i)w̄∗(i)|2. (15)

Taking the gradient terms of (15) with respect to v(i), w̄(i)
and using the gradient descent rules [9] for the interpolator
v(i + 1) = v(i) − η∇vJMSE(w̄(i),v(i)) and the reduced-
rank filter w̄(i + 1) = w̄(i)−μ∇wJMSE(w̄(i),v(i)) yields:

v(i + 1) = v(i) + ηe∗(i)u(i), (16)

w̄(i + 1) = w̄(i) + μe∗(i)r̄(i), (17)

where e(i) = d(i) − w̄H(i)r̄(i), u(i) = �T (i)w̄∗(i), μ
and η are the step sizes of the algorithm for w̄(i) and v(i).
The LMS algorithm for the proposed structure described in
this section has a computational complexity O(M/L + NI).
In fact, the proposed structure trades off one LMS algorithm
with complexity O(M) against two LMS algorithms with com-
plexity O(M/L) and O(NI), operating simultaneously.

5. SIMULATIONS

In this section we analyze the proposed reduced-rank scheme
and LMS algorithms in a block equalization application with
doubly-selective channels. We consider the insertion of a
cyclic prefix with Q symbols at the transmitter and its removal
at the receiver. Let us define the M × 1 QPSK symbol block

s(i) =
[
s0(i) . . . sM−1(i)

]T
, with sm(i) ∈ {±1,±j} and

m = 1, . . . , M . The M × 1 received block after the removal
of the cyclic prefix can be written as

r(i) = H(i)s(i) + n(i) (18)
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where n(i) = [n1(i) . . . nM (i)]T is the complex Gaussian

noise vector with E[n(i)nH(i)] = σ2I, and H(i) is a block
convolution matrix that cannot be diagonalized by the Dis-
crete Fourier Transform (DFT) unless the channel can be con-
sidered constant over one block interval. In doubly-selective
channels, the designer has to consider other alternatives to
equalization rather than DFT-based, as pointed out in [10].
We consider linear equalizers with decisions given by ŝm =
sgn

{�[w̄H
m(i)r̄(i)]+j�[w̄H

m(i)r̄(i)]
}

, where m = 1, . . . , M ,

sgn(·) is the slicer and the operators �(·) and �(·) take the
real and imaginary parts, respectively. The simulations use
Q = 8 with M = 32 or Q = 16 with M = 64, 3-path
channels with coefficients obtained with Clarke’s model [8]
and relative powers given by 0, −3 and −6 dB, where in each
run the spacing of paths is obtained from a discrete uniform
random variable between 1 and 4 symbols for Q = 16 and
between 1 and 2 symbols for Q = 8, and curves are averaged
over 100 runs.
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Fig. 2. BER performance versus number of decimation branches.

We first evaluate the MSE performance for a scenario with
data support of 500 blocks of the proposed scheme for various
ranks and number of branches B, the existing MWF and full-
rank methods. The MWF uses a rank with D = M/L = 4,
i.e. a filter with only 4 taps, whereas the proposed scheme em-
ploys an interpolator with only 3 taps and the pre-stored deci-
mation (PS-DEC) scheme, which was the best value obtained
in our studies for its length. The results in Fig. 2 show that
the proposed system is able to approach the optimal MMSE
performance (which assumes known channels and noise vari-
ance) as the number of branches is increased.

The bit error rate (BER) performance versus the number
of blocks and Eb/N0 was evaluated with the proposed dec-
imation schemes, as shown in Fig. 3. The algorithms are
trained with 200 blocks and then switch to decision-directed
mode. The results indicate that the proposed scheme with
the optimal decimation (OPT-DEC) achieves the best perfor-
mance, followed by the proposed method with the PS-DEC,
the random decimation system (R-DEC), the MWF and the
full-rank approach. The performance of the uniform decima-
tion (U-DEC) scheme with B = 1 is significantly inferior to
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Fig. 3. BER versus (a) number of blocks (b) Eb/N0 for 1000
blocks.

those that employ several branches and is slightly inferior to
the full-rank method.

6. CONCLUSIONS
We have proposed a low-complexity reduced-rank method
for general parameter estimation using an adaptive decima-
tion and interpolation scheme based on diversity-combining.
The proposed approach was analyzed for block equalization
in doubly-selective channels, and was shown to outperform
the best known methods and approach the optimal MMSE es-
timator.
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