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ABSTRACT

The approach based on balanced realization theory, previously used
to analyze the convergence speed of adaptive IIR filters in the iden-
tification configuration and to propose a faster algorithm (succes-
sive approximations algorithm), is now used in the inverse identifi-
cation configuration. This case is of interest for applications such as
channel equalization and system identification itself. We show that,
while in an identification configuration the Hankel singular values of
the system being identified have an important effect on convergence
speed, in the inverse identification case it is the Hankel singular val-
ues of a certain system related to the system being identified that
have this role. From this result, a condition for faster convergence
speed is obtained as well as an inverse identification version of the
successive approximations algorithm. As in the identification case, it
can lead to much faster convergence with a relatively small increase
in computational complexity.

Index Terms— Adaptive IIR filtering, convergence speed.

1. INTRODUCTION

Adaptive IIR filters [1]-[3] frequently converge very slowly, which
tends to inhibit their use in real applications. In [4]-[6], we presented
an analysis of the local convergence speed of adaptive IIR filters in
an identification configuration, based on balanced realization theory.
From this, followed a new adaptive IIR algorithm with faster con-
vergence, called the successive approximations (SA) algorithm. In
[7] the same approach was used to analyze the convergence speed of
adaptive IIR filters in the inverse identification configuration. This
case is more commonly associated with channel equalization but can
also be of interest to system identification itself, since, for instance,
convergence speed properties are not necessarily equal to those of
the identification configuration.

This work is organized as follows. In Section 2 we state the iden-
tification and inverse identification adaptive IIR filtering problems
under consideration. Also, to motivate the analysis of the inverse
identification problems we present a numerical example of slow con-
vergence. In Section 3, aspects of the analysis of the identification
case presented in [4]-[6] are reviewed. In Sections 4 and 5 this ap-
proach is extended to the inverse identification case. Based on this, in
Section 6 we obtain a condition for faster convergence in the inverse
identification case and in Section 7 we obtain an inverse identifica-
tion version of the SA algorithm. Finally, in Section 8 we discuss
perspectives for the continuation of this work.

This work was supported by FAPESP (Proc. 06/01113-0).

2. PROBLEM STATEMENT

2.1. Identification and Inverse Identification Configurations

Identification and inverse identification configurations for adaptive
filtering [8] are represented in Fig. 1. In identification configuration

adaptive IIR filtering, a rational function bH(z) is adapted so as to
minimize the mean-square error E[e2(n)], where e(n) = y(n) −by(n) is the error, y(n) = H(z)u(n) is the system output (the “de-

sired signal”) for a known input u(n) and by(n) = bH(z)u(n) is the
filter output for the same input. In this mixed notation, z is the unit-
delay operator, with zu(n) = u(n − 1). If the input u(n) is white,
the problem is equivalent to the minimization of the squared L2

norm ||H(z)− bH(z)||2. In the inverse identification case, a rational

function bHI(z) is adapted so as to minimize E[e2(n)], where now

e(n) = u(n)− bu(n), with bu(n) = bHI(z)y(n) = bHI(z)H(z)u(n).
In this case, for white u(n) the problem is equivalent to the mini-

mization of the squared L2 norm ||1− bHI(z)H(z)||2.
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Fig. 1. Identification (top) and inverse identification (bottom) adap-
tive filter configurations.
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2.2. Example of Slow Convergence

To motivate the analysis that follows, we consider, in the inverse
identification configuration, the application of a standard direct-form
stochastic gradient algorithm [3, p.271] to the case in which H(z−1)
has zeros at 0.6∠± 95◦ and 0.8∠± 110◦ , poles at 0.7∠± 30 ◦ and
0.7∠ ± 90◦ and unit L2 norm, the signal u(n) is white Gaussian
noise with unit variance and we have sufficient modelling. Initial
parameter values equal to 0.5 times the true parameter values were
chosen. Adaptation steps μa = 0.02 and μb = 0.2, which are within
a factor of 2 of the values that lead the adaptation to diverge, were
used for, respectively, the pole and zero parameters of the adaptive
filter. The squared error e2(n) is shown in Fig. 2, in logarithmic
scale. It can be seen that to reach an error of −60 dB, for instance,
it takes over 2× 105 iterations.
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Fig. 2. Example of slow convergence in inverse identification.

3. REVIEW OF IDENTIFICATION CONFIGURATION

We now review some aspects of the analysis of convergence speed
in the identification configuration, presented in [4], [6]. The ideas
involved will then be applied in the next section to the inverse iden-
tification configuration.

3.1. Reduced Error Surface

We assume a white input, so E[e2(n)] = ||H(z) − bH(z)||2. WithbH(z) = (b + b1z + . . . + bMzM )/(1 + a1z + . . . + aMzM ) =
B(z)/A(z) and A(z) = zMA(z−1), we can always obtain a set of
functions j

Pk(z)

A(z)

ffM

k=0

∪

j
zk A(z)

A(z)

ff∞
k=1

,

with PM (z) = A(z), such that bH(z) =
PM

k=0
νkPk(z)/A(z),

which is a complete orthonormal basis for the Hardy space H2 of
causal and stable functions of the complex variable z (as follows
from [3, p.122]). We note that the basis functions zkA(z)/A(z) are
allpass, that is, |ejωkA(ejω)/A(ejω)| = 1.

Writing now H(z) in terms of this basis, we have H(z) =PM

k=0
ρkPk(z)/A(z) +

P
∞

k=1
τkzkA(z)/A(z), which leads to

||H(z)− bH(z)||2 =

MX
k=0

(νk − ρk)2 +

∞X
k=1

τ 2

k . (1)

With 〈., .〉 denoting the standard inner product, since τk = 〈H(z),
zkA(z)/A(z)〉, we have then

||H(z)− bH(z)||2 =
MX

k=0

(νk − ρk)2 +
∞X

k=1

〈H(z), zk A(z)

A(z)
〉2. (2)

Optimizing the zeros of bH(z) given its poles (that is, working on

the “reduced error surface”) makes
PM

k=0
(νk − ρk)2 = 0 [3]. The

remaining term in (2) can then be written in matrix form, so that

||H(z)− bH(z)||2 =

∞X
k=1

〈H(z), zk A(z)

A(z)
〉2 = v

t
Γ

2

Hv, (3)

where v contains the coefficients of the expansion of A(z)/A(z),
superscript t denotes transpose, and ΓH is the Hankel form of H(z).

3.2. Balanced Form Factorization

We now assume that deg H(z) = N . The Hankel form ΓH can be
factored into the controlability and observability forms of a balanced
realization of H(z), which allows us to rewrite (3) so that on the
reduced error surface

||H(z)− bH(z)||2 = α
t
Σ

2
α,

where the elements of α are αk = 〈ζk(z), A(z)/A(z)〉, k = 1, .., N ,
with ζk(z) being the normalized controllability transfer functions of
a balanced realization of H(z), and where Σ is diagonal and com-
posed of the Hankel singular values σk of H(z).

If we consider a true gradient adaptation algorithm working on
the reduced error surface, a local description of the adaptation pro-
cess is then obtained as

α(n + 1) ≈
˘
I− μaJ[α(n)]Jt[α(n)]Σ2

¯
α(n), (4)

where μa is the adaptation stepsize of the pole paramenters and J
is a Jacobian sensitivy matrix, with elements [J]i,j =∂αi/∂aj . If
the eigenvalue spread of JJt

Σ
2 is large, then convergence is slow at

points where α(n) is mainly in the directions of eigenvectors asso-
ciated with small eigenvalues of JJt

Σ
2. In these slowly converging

situations, the behaviour of the true gradient adaptation algorithm
is usually a good approximation of the behaviour of the stochastic
gradient algorithm.

3.3. Faster Convergence Condition and SA Algorithm

Now, if H(z) = D(z)/D(z), with D(z) = zND(z−1), then H(z)
is allpass and its Hankel singular values are all equal to 1. This tends
to contribute to a smaller eigenvalue spread of JJtΣ2 and, thus, to
faster convergence of the adaptation. In fact, since the direct term of
the transfer function does not affect the associated Hankel form, any

H(z) = s

»
D(z)

D(z)
+ c

–
= s

D(z) + cD(z)

D(z)
(5)

will also have equal Hankel singular values (in this case, equal to s).

In the successive approximations (SA) algorithm proposed in
[4], an auxiliary block is used in an iterative manner to turn H(z)
into an allpass function and thus speed up convergence.
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4. EXTENSION TO INVERSE IDENTIFICATION

With H(z) = C(z)/D(z) ∈ H2 and assuming deg[H(z)] = M
(sufficient modelling), we initially build a complete orthonormal ba-
sis forH2, j

Pk(z)

A(z)D(z)

ff
2M

k=0

∪

j
zk A(z)D(z)

A(z)D(z)

ff∞
k=1

, (6)

where D(z) = zMD(z−1). We now modify this basis to

j
Pk(z)

A(z)D(z)
�
C(z)

C(z)

ff2M

k=0

∪

j
zk A(z)D(z)

A(z)D(z)
�
C(z)

C(z)

ff∞
k=1

, (7)

where C(z) = zMC(z−1).
Although this new set does not necessarily span Hardy space

H2, it is still orthonormal, since for any X(z) and Y (z), 〈X(z)C(z)/
C(z), Y (z)C(z)/C(z)〉 = 〈X(z), Y (z)〉. Moreover, restricting
ourselves to the case in which H(z) is minimum phase, it is easy to

show [7] that bHI(z)H(z) and the constant function F (z) = 1 are in

the space spanned by this basis, with bHI(z)H(z) =
P

2M

k=0
νkPk(z)

C(z)/G(z) and 1 =
P

2M

k=0
ρkPk(z)C(z)/G(z)+

P
∞

k=1
τkzkA(z)

D(z)C(z)/G(z), where G(z) = A(z)D(z)C(z). This result al-
lows us to write the mean- square error as

||1− bHI(z)H(z)||2 =
2MX
k=0

(νk − ρk)2 +
∞X

k=1

τ2

k,

which reminds us of expression (1) for the identification configura-
tion.

This correspondence can be driven further if we note that coef-
ficients τk are given by

τk =

fi
1, zk A(z)D

A(z)D(z)
�
C(z)

C(z)

fl
=

fi
C(z)D(z)

C(z)D(z)
, zk A(z)

A(z)

fl
.

Moreover, since zkA(z)/A(z) is strictly causal, we have, with [.]⊕
being the causal projection operator,

τk =

fi
Hp(z), zk A(z)

A(z)

fl
, Hp(z) �

»
C(z)D(z)

C(z)D(z)

–
⊕

.

Thus, we arrive at:

Property 1 In the inverse identification configuration, with mini-
mum phase H(z) = C(z)/D(z), bHI(z) = B(z)/A(z) and suf-
ficient modelling, the mean-square error can be written as

||1− bHI(z)H(z)||2 =
2MX
k=0

(νk − ρk)2 +
∞X

k=1

fi
Hp(z), zk A(z)

A(z)

fl
2,

(8)
where νk and ρk are coefficients of the expansion of bHI(z)H(z)
and 1, respectively, in the basis defined by (7) and Hp is the causal
projection of C(z)D(z)/[C(z)D(z)].

We can see that (8) has the same form as (2), with Hp(z) in
place of H(z). In the identification configuration, as seen, the as-
sumption that the parameters are on the reduced error surface leads
to (3) which, in turn, leads to the convergence properties discussed
in Section 3 (and others, discussed in [4], [6]). In the next section
we will see how a similar procedure can be followed starting from
(8).

5. SLOW CONVERGENCE ON THE RESTRICTED ERROR
SURFACE

From (8), it follows that at points where

∂

∂p

2MX
k=0

(νk − ρk)2 = 0 (9)

for all adapted parameters p, a local description of the adaptation
such as (4) can be obtained, and all the resulting local convergence
speed properties of the identification configuration, discussed in Sec-
tion 3, apply to the inverse identification configuration if H(z) is
replaced by Hp(z). If there is a manifold of points that satisfy (9)
rather than a discrete set of them, then it is more likely that they will
be relevant to the global behaviour of the adaptation.

When νk = ρk for k = 0, 1, . . . 2M − 1 we say the parame-
ters are on the “second restricted error surface”, which is shown [7]
to be a one-dimensional manifold. Specifically, solutions bHI(z) =
B(z)/A(z) to these equations are given by

»
b

a

–
= [ ΘC −(ΦD + γΦD)]−1(θD + γθD),

where ΘC , ΘD = [θD ΦD] and ΘD = [θD ΦD]P, with P being
the anti-diagonal permutation matrix, are 2M×(M+1) convolution
matrices formed from the coefficients of C(z), D(z), and D(z),
respectively, and b and [1 a

t]t are (M +1)×1 vectors formed from
the coefficients of B(z) and A(z), respectively. The only restriction
on scalar γ is that B(z)/A(z) ∈ H2.

We conjecture that close to every point of the second restricted
error surface there is a point where (9) is valid. This is plausible
since, as we move away from the second restricted error surface,
all terms (νk − ρk)2 for k = 0, 1, . . . , 2M − 1 grow and only
(ν2M − ρ

2M )2 may become smaller.

Corroborating this conjecture, it is verified [7] that for the slowly
converging example presented in Section 2, adaptation readily rea-
ches a point close to the second restricted error surface and that from
there on, convergence is very slow. From there on, also, refering to
(4) with JJt

Σ
2 associated now with Hp(z) instead of H(z), α(n) is

mainly in the direction of the eigenvectors associated with the small
eigenvalues of JJt

Σ
2, which effectively explains why convergence

is slow. Figure 3 shows the evolution of eigenvalues λk of JJt
Σ

2.
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6. CONDITION FOR SMALL SINGULAR VALUE SPREAD

We now obtain a condition relative to H(z) in order that Hp(z) =
{C(z)D(z)/[C(z)D(z)]}⊕ has a small Hankel singular value spread,
contributing to faster convergence. Initially, we note that Hp(z) has
the form S(z)/C(z) and that if

S(z) = s[C(z) + cC(z)], (10)

for any c, then Hp(z) = S(z)/C(z) will have all Hankel singu-
lar values equal to s. Now, separating the causal and strictly anti-
causal parts of C(z)D(z)/[C(z)D(z)], we can write S(z)D(z) +
T (z)C(z) = C(z)D(z), which with (10) results in s[C(z)+cC(z)]
D(z) + T (z)C(z) = C(z)D(z). Rearranging, we get

[T (z) + scD(z)]C(z) = [D(z) − sD(z)]C(z).

Since minimum phase C(z) does not have roots in common with
C(z), it follows that C(z) = t[D(z)− sD(z)] and

H(z) = t
D(z)− sD(z)

D(z)
, (11)

for any t, which should be compared with (5) for the identification
configuration.

7. SUCCESSIVE APPROXIMATIONS ALGORITHM

With (11) we now obtain an inverse identification version of the suc-
cessive approximations algorithm (SA) presented in [4]. Starting
from an initial estimate H∗(z) of H(z), an auxiliary block Ha(z) is

employed as depicted in Figure 4, such that the input to bHI(z) is now
[H(z)+Ha(z)]u(n) and H(z)+Ha(z) ≈ t[D(z)−sD(z)]/D(z).
A normalized lattice is adapted with the simplified partial stochastic
gradient algorithm [3], with adaptation steps μa and μb. After a cer-
tain number na of samples, nx samples are used to compute a new

estimate H∗(z) such that H∗(z) ≈ 1/ bHI(z) − Ha(z). With it, a
new Ha(z) is obtained and the process repeats.

H(z) �+ bHI(z) �+
−

�

Ha(z) �

�
���

y(n) bu(n)
e(n)

u(n)

Fig. 4. Diagram of inverse identification version of SA algorithm

This inverse identification version of the SA algorithm was ap-
plied to the slow converging example of Section 2, with t = 1,
s = 0.6, μa = μb = 0.1, na = 450 and nx = 200. An ini-
tial estimate H∗(z) obtained with the direct form parameters at 0.7
times their true value was assumed. The result is in Figure 5, along
with the result for the normalized lattice alone with μa = μb = 0.03
(which are within a factor of 2 of their maximum value for stability)
and the same initialization H∗(z). As can be seen, the SA algorithm
is much faster.
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Fig. 5. Inverse identification SA algorithm (faster) and normalized
lattice gradient algorithm (slower).

8. CONCLUSIONS AND PERSPECTIVES

The analytical approach in [4], [6], [7] was applied to inverse iden-
tification adaptive IIR filtering and an inverse identification version
of the successive approximations algorithm was obtained. Other de-
velopments of this work that would be of interest are the analysis
of the effect, in inverse identification, of the choice of parameteriza-
tion (direct form, lattice, etc.) and the analysis of the non-minimum
phase case. For both the identification and inverse identification con-
figurations, the case of non-white input signals is of great interest. It
is possible that the approach followed here can be applied to this
problem.
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