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ABSTRACT 

In this paper, we derive a “convolution theorem” suitable for the 
Hirschman optimal transform (HOT), a unitary transform derived 
from a discrete-time, discrete-frequency version of the entropy-
based uncertainty measure first described by Hirschman [10]. 
We use the result to develop a fast block-LMS adaptive filter 
which we call the HOT Block-LMS adaptive filter. This filter 
requires slightly less than half of the computations that are 
required for the FFT Block-LMS adaptive filter. The simulations 
show that the convergence rates of both the HOT and FFT 
Block-LMS adaptive filters are similar. 

Index Terms — adaptive filters, fast Fourier 
transforms, entropy 

1. INTRODUCTION 

The HOT is a recently developed discrete unitary transform that 
uses the orthonormal minimizers of the entropy-based 
Hirschman uncertainty measure [1]. This measure is different 
from the energy-based Heisenberg uncertainty measure that is 
only suited for continuous time signals. The Hirschman 
uncertainty measure uses entropy to quantify the spread of 
discrete-time signals in time and frequency [2]. Since the HOT 
bases are among the minimizers of the uncertainty measure, they 
have the novel property of being the most compact in discrete 
time and frequency. The fact that the HOT basis sequences have 
many zero-valued samples, and their resemblance to the DFT 
basis sequences, makes the HOT computationally attractive. 
Furthermore, it has been shown recently that a thresholding 
algorithm using the HOT yields superior frequency resolution of 
a pure tone in additive white noise to a similar algorithm based 
on the DFT [3]. 

The main theorem in [1] describes a method to generate an 
2N K= -point ortho-normal HOT basis, where K  is an integer. 

A HOT basis sequence of length 2K  is the most compact bases 
in the time-frequency plane. The 32-point HOT matrix is 
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Eq. (1) indicates that the HOT of any sequence is related to the 
DFT of some polyphase components of the signal. In fact, we 
called this property the “1 and ½ dimensionality” of the HOT in 
[2]. Consequently, for this paper, we will use the terms HOT and 

DFT of the polyphase components interchangeably. The 2K -

point HOT requires fewer computations than the 2K -point 
DFT. We used this computational efficiency of the HOT to 
implement fast convolution algorithms in [4]. When K  is a 

power-of-2 integer, then 2
2logK K  (complex) multiplications 

are needed to compute the HOT, which is half that is required 
when computing the DFT. 

In this paper, we use the computational efficiency of the 
HOT to implement a fast block-LMS adaptive filter. The fast 
Block-LMS adaptive filter was first proposed [5] to reduce 
computational complexity. Our proposed HOT Block-LMS 
adaptive filter requires less than half of the computations 
required in the corresponding FFT Block-LMS adaptive filter. 
This significant complexity reduction could be important in 
many real time applications. Of course, the complexity reduction 
comes at some performance cost. 

In Section 2, we develop the notion of convolution with the 
HOT. In Section 3, we develop the HOT Block-LMS algorithm. 
Section 4 contains our convergence analysis. Simulations are 
provided in Section 5. There we also examine the performance 
and costs in some detail. Finally, we conclude. 

2. HOT AND CIRCULAR CONVOLUTION 

Suppose that u and h are two signals of length 2N K=  and the 
signal y  is their circular convolution. Then, in the frequency 

domain we can write ( ) ( ) ( )Y k U k H k= . To replace the DFT 

with the HOT we need the relationship between the DCT and 
HOT of the signals u, h, and y. Define ( ) ( )  iu l u lK i= + , where 

i,l = 0, 1, 2, …… , K-1. Then 
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where ( )iU k is the DFT of ( )iu l . In matrix form, Eq. (2) can be 

written  
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where 
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… and FK  is the K-

point DFT matrix. Eq. (3) relates the DFT of the signal u to its 
HOT. Therefore, circular convolution in the HOT domain is 
given by 
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The ⋅  means element-wise multiplication. Eq (4) is not in the 
form that we require. To find the jth polyphase component of the 
output K jF y , we divide it into the following K equations: 
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where r = 0, 1, 2, …., K-1. But since 
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Eq. (5) simplifies to 
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Because the DFT matrix is unitary we have 
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Let Hi be the diagonal matrix corresponding to K iF h . Then the 

element-wise multiplication in Eq. (8) can be replaced with 
conventional matrix multiplication. Finally we combine the K 
equations in (8) 
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where ( )0, 1KD D K−= . From Eq. (9) one can see that calculating 

the HOT of the output y requires 3 2 2
2 2 log  -K K K K K+ +  

multiplications. When we require only one polyphase 

component, then only 2 2
2 2  2 log logK K K K K+ +  

multiplications are necessary. By way of comparison, if the DFT 

is used to calculate the output then 2 2
26 logK K K+  

multiplications are required. Asymptotically in K , we see that 
the HOT could be three times more efficient  than the DFT. 

3. THE HOT BLOCK-LMS ADAPTIVE FILTER 

In a block adaptive filter, the adaptation proceeds block-by-
block with the weight update equation 
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( 1) ( ) ( ),
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L
w k w k e kL i u kL i

L i

μ −
+ = + + +∑
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where d and  y are the desired  and output signals, respectively, u 
is the  vector that contains the input samples in the kth block, L is 
the block size or the filter length, and the error is 

( ) ( ) ( )e n d n y n= − . The FFT is commonly used to efficiently 

calculate the output of the filter and the sum in the update 
equation. For our proposed HOT Block-LMS algorithm, we use 
the update equation: 
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We assume that the block size or the filter length is 
2

2
K  (our 

reason for this assumption will become clear) and the block size 
is equal to the filter order. The parameter j determines which 
polyphase component of the error signal is being used in the 
adaptation. This parameter can be changed from block to block. 
Therefore, in the adaptation we are only using one polyphase 
component, rather than the whole signal. The output and the sum 
in this update equation are efficiently calculated: 

a) Append the weight vectors with 
2

2
K  zeros (the resulting 

vector is now 2K  points long as required in the HOT 
definition) and find its HOT. 

b) Use the inverse HOT and Eq. (9) to calculate the jth 
polyphase component of the circular convolution. The jth 
polyphase component of the output can be found by 
discarding the first half of the jth polyphase component of 
the circular convolution. 

c) Use the inverse HOT and Eq. (9) to calculate the jth 
polyphase component of the circular convolution. The jth 
polyphase component of the output can be found by 
discarding the first half of the jth polyphase component of 
the circular convolution. 

d) Calculate the jth polyphase component of the error, insert a 

block of 2
K  zeros, up-sample by K, then calculate its 

HOT. 
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Fig. 1 HOT Block-LMS Algorithm. 
 
e) Circularly flip the vector in b) and then compute its HOT. 
f) Compute the sum in the update equation using Eq. (9) – 

this sum is that of the first half elements of the circular 
convolution between the vectors in part e) and d). 
 

The HOT Block LMS adaptive filter is shown in Figure 1. Now 
we look at the computational cost of the algorithm and compare 
it to that of the FFT block adaptive algorithm.  Parts a), b), and 

e) require 2
23 log  K K  multiplications, part c) 

requires 2
2log   K K K+ , part d) requires 2logK K , and part f) 

requires 2 2
2  logK K K+ . The total number of multiplications 

is thus 2 2
2 24 log   2 log 2K K K K K+ + . The corresponding FFT 

block adaptive algorithm requires 2 2
210 log   2K K K+  

multiplications – asymptotically more than twice as many. 
Therefore, by using only one polyphase component for the 
adaptation in a block, the computational cost can be reduced by 
a factor of 2.5. While this complexity reduction comes at the cost 
of not using all available information, our proposed algorithm 
provides better estimates than the LMS filter. The reduction of 
the computational complexity in our algorithm comes from using 
the polyphase components of the input signal to calculate one 
polyphase component of the output using HOT. It is worth 
mentioning that the fast exact LMS adaptive algorithm (FELMS) 
[6] also reduces the computational complexities by finding the 
output via processing the polyphase components of the input. 
However, the computational complexity reduction of the 
FELMS is less than that found in the FFT and HOT block 
adaptive algorithms because the FELMS is designed to have 
exact mathematical equivalence to, and hence the same 
convergence properties as, the conventional LMS.  

4. COVERGENCE ANALYSIS 

In this section we look at the convergence analysis of the HOT 
Block-LMS in time domain. We will assume small step size. The 
HOT-LMS minimizes the cost, 
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which is the average of squared errors in the jth error polyphase 
component. From the statistical LMS theory [7], the HOT 
Block-LMS can be analyzed using the stochastic difference 
equation 
 ( 1) ( ) ( ) ( ),v k I v k kμ φ+ = − Λ +  (13) 

where ( ) ( ( ))H
ov k Q w w k= − , Q  is the eigenvector matrix of the 

input autocorrelation matrix, ow  is the optimal Wiener solution, 

and Λ  is the diagonal matrix that contains the eignvalues of the 
input autocorrelation matrix. The driving force ( )kφ for the HOT 
Block-LMS is given by   
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where oe is the error produced by the Wiener filter. It is easily 

shown that { ( )} 0E kφ =  and 
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oJ  is the minimum MSE produced by the Wiener filter. The 

mean square of the thl  component of ( )v k is given by 
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where lλ is the thl eigenvalue of the input autocorrelation 

matrix. Therefore, the average time constant of the HOT Block-
LMS is 
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The misadjustment can be calculated using the equation 
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Using eq (15), we can find 
2

{ ( ) }
l

E v ∞ and substitute the result 

into eq (17). The misadjustment of the HOT Block-LMS is  
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The average time constant of the HOT Block-LMS is the same as 
that of the FFT Block-LMS. However the HOT Block-LMS has 
K times higher misadjustment than the FFT Block-LMS. 

Similar to the FFT Block-LMS [8], the convergence of the 
HOT Block-LMS can be improved by equalizing the modes of 
the filter by using different step size for each mode. The suitable 
step size for each mode can be found by estimating the power in 
each HOT sample using   

 
2

( ) ( 1) (1 ) ( ) ,i i iP k P k U kγ γ= − + −  (19) 

where ( )iU k  is the ith HOT sample of the input of the filter and 

γ is a constant close to, but less than 1. The step size for the ith 
mode is given by  

 ,
( )i

iP k

α
μ =  (20) 

where α  is a constant. As we will show in the next section, by 
assigning to each weight an individual step size, the convergence 
rate improvement of the HOT Block-LMS is similar to the 
improvement that can be achieved by the FFT Block-LMS.  

5. SIMULATIONS 

In this section we simulate the HOT Block-LMS adaptive filter 
to investigate its performance and compare its convergence rate 
with the LMS and FFT Block-LMS. The input of the adaptive 
filter was generated by coloring unit variance white noise using 
the FIR filter H(z) = 0.1 + 0.2 z--1 + 0.3z-2 + 0.4z--3 + 0.4z-4 + 
0.2z-5 + 0.1z-6. The desired input was generated using the linear 

model d(n)= T
ow u(n)+eo(n), where eo(n) is the measurement 

white noise with variance of 10-4.  The learning curves of the 
LMS, the FFT Block-LMS, and the HOT Block-LMS are shown 
in Figure 2. The step size was adjusted such that all of the 
adaptive filters converge at the same rate when they are fed with 
white noise (the corresponding Figure is not included for the 
lack of space). 

The learning curves show that the convergence rate of the 
computationally more efficient HOT Block-LMS is close to that 
of the FFT Block-LMS. This is due to the ability of the HOT 
basis to approximately diagonalize the autocorrelation matrix of 
the input. 

6. CONCLUSIONS 

This paper has proposed the computationally efficient HOT 
Block-LMS algorithm. In addition to its efficiency, the 
simulations show that its convergence rate is close to that of the 
FFT Block-LMS. Our next goal is to quantitatively determine 

the convergence rate as has been done with the FFT Block LMS 
[9]. 

Fig. 2 The learning curves of the LMS, the FFT Block-LMS, and 
the HOT Block-LMS. 
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