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ABSTRACT 

The least mean square (LMS) algorithm is widely assumed 

to operate around the corresponding Wiener filter solution. 

It has been observed that an exception to this popular 

perception occurs when the algorithm is used to adapt a 

transversal equalizer in the presence of additive narrowband 

interference. In the latter case, the steady-state LMS 

behavior does not correspond to the Wiener filter: its mean 

weights are different from the Wiener weights, and its mean 

squared error performance may be significantly better than 

the Wiener performance. Starting from the Butterweck 

expansion of the weight update equation, we derive a 

recursive approximation for the mean of the LMS weight 

vector in steady-state. The analytical approximation is good 

for all step-sizes where the expansion converges, as 

supported by the simulation results. 

Index Term— adaptive equalization, iterative analysis, 

steady-state analysis, sinusoidal interference 

1. INTRODUCTION

The least mean square (LMS) algorithm [1] is perhaps the 

most popular adaptive algorithm utilized today due to its 

simplicity and robustness. The LMS algorithm, in the vast 

majority of its applications, tends to the corresponding 

Wiener filter as the step-size is made smaller. Conversely, 

LMS performance worsens for larger step-sizes as the 

adapted weights vary more around the Wiener solution.  

In adaptive transversal equalization, however, the LMS 

algorithm has been observed to contradict this widely 

expected behavior. This “non-Wiener” phenomenon occurs 

when the LMS adaptive transversal equalizer is utilized in 

an environment with narrowband interference. The mean of 

the large step-size LMS weights can be far removed from 

the expected Wiener solution. 

This equalization-based interference mitigation technique 

was proposed by North et al. [2]. The latter also reported 

that the LMS equalizer with large step-size outperforms the 

fixed Wiener equalizer in terms of bit-error rate. That 

observation led to follow-up papers [3, 4] for estimating 

mean squared error performance and its bound, respectively. 

Towards an explanation of the phenomenon, Beex and 

Zeidler [5, 6] hypothesized that the LMS equalizer is 

tracking an underlying optimal time-varying Wiener filter. 

Lastly, Batra et al. [7] showed the slow convergence of this 

adaptation, even when it is operating with large step-sizes. 

The potential for a shift in the mean of the LMS weights, 

away from the (time-invariant) Wiener weights, was noted 

earlier but not explicitly analyzed [6]. In this paper, we 

analytically derive the displacement of the mean LMS 

weights from the Wiener weights and provide an iterative 

expression leading to the mean of the LMS weights in 

steady state. The analysis starts with Butterweck’s iterative 

expansion of the LMS update equation [8]. This expansion 

is attractive as each term can be seen as a linear time-

invariant state update equation. We determine a recursive 

expression for the mean of the steady-state LMS weights. 

The rest of this paper is organized as follows. Section 2 

establishes the problem of equalization in an environment 

with narrowband interference and presents the alternative 

view of the problem that renders the derivation tractable. 

Section 3 presents the Butterweck iterative expansion and 

the iterative solution to the steady-state mean. Section 4 

provides several observations on the analytical result, 

including a comparison to simulation results. Concluding 

remarks are given in Section 5. 

2. LMS ADAPTIVE TRANSVERSAL EQUALIZER 

WITH NARROWBAND INTERFERENCE 

Fig. 1 depicts the system diagram for the problem of 

adaptive equalization in an environment with narrowband 

interference. To isolate the system behavior due to the 

narrowband interference, we use a simplified version of the 

conventional equalization problem. The equalizer is fixed in 

the training mode. The channel is assumed to be ideal, i.e., it 

causes no intersymbol interference. Furthermore, the 

additive noise is assumed to be negligible relative to the 

signal and thus omitted from the analysis. 

The transmitted signal nx  is complex valued and can be 

modeled as a white zero-mean wide-sense-stationary process 

with power . For the narrowband interference ni , we 

consider the limiting case, a complex sinusoidal process: 
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This process has power  and frequency . The phase 

is randomly drawn from [0  but is fixed in each 
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realization. The two processes,  and i , are uncorrelated. nx n

The equalizer receives u x  and forms the input 

vector 1 1 , where  is the 

transpose operator. We also denote the signal components of 

 as nx  and ni . The equalizer also gets the desired signal 

n , a delayed version of the transmitted signal. The 

delay  must be chosen to be less than M .
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The weight vector  is adapted using the LMS 

algorithm 
nw

 (2) *
1n n ew w u

with step-size , driven by the error signal 

 (3) H
n n ne x w u

Here,  is the complex conjugate operator, and ( )  is 

the Hermitian (conjugate) transpose operator. Combining 

*( ) H

(2)

and (3) yields 

 (4) *
1

H
n n n n xw I u u w u

where  is the (  identity matrix. I M M

To make our iterative analysis tractable, we rewrite the 

LMS adaptation by redefining the adapted weights as 

 (5) n xw p w

where  is the -st column of I . The vector 

arises from the fact that . The 

redefined weights are updated by 

xp ( xp
*{ }n n x xE xu

 (6) *
1

H
n n n n iw I u u w u

In other words, the equalization problem is turned into the 

equivalent problem of estimating the interference 

component in .nu

3. EQUALIZER MEAN WEIGHT ANALYSIS 

Our goal is to evaluate { }nEw w , the steady-state mean 

of the weights updated by (6). Expanding 0 ,n k k n ,

Butterweck [8] rewrites 

w v

(6) in an iterative form, starting with 

the zero-order solution 

 (7) *
0, 1 0,n n iv I R v un n

He

and the higher-order correction terms for 0k

 (8) , 1 , 1,
H

k n k n n n k nv I R v R u u v

with  the input autocorrelation matrix. This matrix is 

well-defined for our problem and equals 

R

 (9) 2 2H
n n x iER u u I e

where 1[1 ]j j M Te ee .

Defining ,{k k }Ev v n , the LMS weight expansion 

leads to 0k kvw . We evaluated the first few terms of 

kv  and iteratively extended these results to the higher-order 

terms. The expected value of the zero-order solution in 

steady state is the Wiener solution to the problem: 

* 1
0

0
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where 

* 2 j
n n iE i ep u e  (11) 

For k , we have 0

1,
0
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Evaluating the expected value in (12) requires repeated 

expansion until no ,k nv  term remains. We omit the detailed 

derivation here as it is too extensive for the space available. 

However, we will mention the two key assumptions that 

were asserted in that derivation. First, the ( )  term 

in 

H
n nR u u

(12) can be decomposed as follows 

 (13) 

H
n n

H H H
n n n n n n n nx i

R u u

R x x R i i x i i x

For the strong narrowband interference case, only one of the 

cross terms in each (  term in the expanded H
n nR u u kv

expression is a major contributor when evaluating the 

expected value in (12). The other terms are small and are 

eliminated in the derivation. Secondly, we assumed that 

 (14) { } { } {H H H H
n n m m n n m mE E Ex x Qx x x x Q x x }

 for n  and  with .m
pQ I R 0p

Using the above assumptions, we found that all odd kv

are negligibly small. The first two even correction terms are 

shown here. The estimated mean of  is 2,nv

1
12 1 1

2 ,
1

M
mm

x i m

m

v R Z R R I R p  (15) 

and the mean of  is shown in 4,nv (16) below. The matrix Z

Fig. 1. Adaptive transversal equalization problem in a narrowband 

interference environment. 

III ­ 1298



is a shift matrix, which has ones on the diagonal 

immediately below the main diagonal and zeros elsewhere, 

and introduced to express cross-correlation matrices:  

 (17) 2 1 : 1H m
n n m xE mx x Z M

j me

Also, the cross-correlation matrix  is defined as ,i mR

 (18) 2
,

H H
i m n n m iER i i ee

Based on (10), (15), and (16), we deduce the recursive 

estimate for the LMS mean weight vector to be 

1

0
l

l

w R A p  (19) 

where the matrix  is derived from lA 2lv  as 

 (20) 

1
12 1

1 ,
1

M
mm

l x l i m

m

A Z R A R I R

for , with .0l 0A I

4. NUMERICAL ILLUSTRATIONS 

We illustrate the weight behavior of the LMS algorithm 

using a fixed structure with  and . Also, the 

complex sinusoidal process with fixed  is used in 

this section. The mean weight behavior is studied as a 

function of the remaining two parameters: the step-size 

and the interference-to-signal ratio (ISR) .

7M 3
0.2

2M

2 2/i x

First, the derived analytical mean of the LMS weights is 

compared against the simulated instantaneous weights 

(20,000 samples in steady state) on the complex plane, as 

shown in Fig. 2 together with the corresponding Wiener 

weights. The ISR is fixed to 20 dB, and the step-size is set to 

. Here, i  is the maximum 

eigenvalue of R . The simulation employs a quadrature 

phase shift-keyed signal as  (i.e., a sample of nx  is 

randomly drawn from ). The analysis and 

simulation agree well, forming a spiral, and clearly differ 

from the Wiener solution. Also, both the mean weights and 

the Wiener weights lie on the radial lines through 

1
max

2
max x

nx

1 j

jee .

This condition is required for the filter to correctly estimate 

n . Therefore, we concentrate on the magnitude of the 

weights for the rest of this section. Note that the magnitudes 

of the Wiener weights are equal. 

i

Furthermore, we check the convergence behavior of the 

series in (19). Fig. 3 illustrates how the magnitude of each 

element of w  in Fig. 2 converges as more terms are added 

to the summation. All the values of w  illustrated in this 

section are estimated by computing the summation up to 

, which satisfies l L 1 610LR A p .

The second study examines w  as a function of , with 

the result shown in Fig. 4. The ISR is maintained at 20 dB, 

while the step-size is varied from 0 to . The departure 

of the mean weights from the Wiener solution becomes 

prevalent around . Also, all the neighboring 

weight pairs are roughly equal distance apart for all .

1
max2

1
max0.03

The expression for the theoretical mean weight in (19) is 

found to diverge for large . While the exact condition for 

the divergence has not been determined, it stems from the 

sequence ,k nv  diverging as k  for all in steady 

state. The LMS algorithm remains stable past the analysis 

breakdown point ( ) as illustrated by the 

simulation results in 

n

1
max1.28

Fig. 4. All converged analysis results 

are in excellent agreement with the simulation. Lastly, the 

LMS algorithm diverges at .1
max1.93

The final study looks at the mean weight behavior as a 

function of the ISR as shown in Fig. 5. The step-size  in 

this illustration is tied to the ISR as .

This result clearly illustrates that the non-Wiener mean 

weight behavior is caused by the narrowband interference. 

When the interference is weak the LMS mean weights 

behave as expected, that is, they follow the Wiener weights. 

1 2 2
max ,x i

1 1
12 4 1 1 1

4 , ,
1 1

M M
lm l

x i l i m

m l

v R Z R Z R R I R R I R

Fig. 2. LMS steady-state weight behavior (20,000 samples), 

analytical mean, and corresponding Wiener weights on -plane.

Fig. 3. Convergence behavior of (19).

1m p  (16)
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As the interference becomes stronger, the LMS mean 

weights begin to move away from the Wiener weights to the 

spiral formation that is prevalently illustrated by Fig. 2. The 

analysis results show a slight deviation in the range about 0 

dB ISR, presumably due to the assumptions made. 

This study of the mean weight behavior for equalization 

in narrowband interference is expected to subsequently lead 

to new insights in analyzing the mean squared error (MSE). 

As observed in Fig. 6, the MSE of the equalizer with the 

mean w  as its fixed weights is larger than when the Wiener 

weights are used while the LMS equalizer operates around 

w  and produces better MSE than the Wiener weights. This 

suggests – as hypothesized by Beex and Zeidler [5, 6] – that 

the LMS instantaneous weight variation is responsible for 

the reduction, from the fixed w  MSE to the LMS MSE. 

5. CONCLUSION 

We have provided an analysis that shows that – and how – 

the mean LMS weights are different from the corresponding 

Wiener weights in an adaptive equalizer application for 

mitigating narrowband interference. The mean LMS weight 

values in steady state are approximated in a recursive form, 

based on the Butterweck expansion of the weight update 

equation. Excellent correspondence between the analytical 

and simulation results for the mean weight vector is 

observed over nearly the entire range of stable step-sizes. 
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Fig. 4. Magnitudes of the mean LMS weights as functions of step-

size. 

Fig. 5. Magnitude of mean weights as a function of ISR. Step-size 

is varied as a function of ISR. 

Fig. 6. Mean squared error as a function of normalized step-size 

for the LMS, fixed, and Wiener filters, corresponding to Fig. 4.
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