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ABSTRACT

In this paper we study the effect of carrier offset on a 
feature distinguishing binary phase shift keying and 
quadrature phase shift keying. The feature is based on the 
subtraction of two consecutive signal values and the 
kurtosis of the absolute value of this subtraction. The paper 
compares performance of the proposed feature to a 
cumulant based feature when both are used in a support 
vector machine classifier. Also the paper compares the 
proposed-feature based classification to the maximum 
likelihood classification and to the quasi-log-likelihood ratio 
classifier. The simulation results showed that the proposed 
feature classifier has a robust performance with respect to 
carrier offset compared to the other above mentioned 
classifiers.

Index Terms— Phase shift keying, Quadrature 
phase shift keying, Pattern classification, Feature extraction, 
Maximum likelihood detection. 

1. INTRODUCTION 

Designing a classification algorithm to solve the digital 
modulation classification (DMC) problem is a challenging 
undertaking. When designing a classification algorithm, 
three main issues should be considered. First, the signal of 
interest propagates through a channel which affects the 
signal by distorting it with noise, fading and multi-path 
delay. Second, not all the signal parameters are known to 
the receiver; this makes the decision of the classifier more 
difficult since one or more of the main parameters shaping 
the signal of interest are unknown. Third, the complexity of 
the classification algorithm is a concerning issue. For this 
reason, noticeable effort has been directed towards the 
lowering of the complexity of the classification algorithm.  

Today’s communication systems more and more rely 
on intelligent receivers capable of distinguishing between 
many different signals. The receivers must have the ability 
to classify a signal in environments that are less than ideal 
with little prior information about the signal. This process 
constitutes the first block in the communication system 
which in the end targets retrieving the signal’s information 

content. There are two main approaches to solve the DMC 
problem. The first is the decision theoretic approach. The 
second is the pattern recognition based approach.

In [1] Wei and Mendel present a maximum likelihood 
(ML) solution using the I-Q domain of the data as a 
sufficient statistic. In their approach they assume the ideal 
case scenario where all the signal parameters and noise 
power are known to the receiver. Polydoros in [2] uses the 
quasi-log-likelihood ratio (qLLR) (an approximation to ML) 
to classify between PSK2 and PSK4. Although in [2] it is 
not required to know the initial phase, all other signal 
parameters and noise power are known to the receiver. This 
is not always the case in real life problems, where 
sometimes all the signal parameters are unknown to the 
receiver. To solve these problems researchers turn to other 
alternative solutions which require less computation 
complexity and/or require less prior information about the 
signal parameters. These requirements lead to the pattern 
recognition approach. 

In the pattern recognition approach the received signal 
is mapped to a feature space where the classification is 
being made. One source of the features used to solve the 
DMC problem using pattern recognition approach are 
cumulants [3]. The reason for using cumulants is that the 
classification algorithms benefit from the fact that higher 
order cumulants for Gaussian random variable equal zero 
[4]. 

This paper proposes a new feature and uses it to 
construct the support vector machine classification 
algorithm. The classification algorithm distinguishes binary 
phase shift keying modulation (PSK2) and quadrature phase 
shift keying modulation (PSK4).  
      In this paper we present the signal model we assume 
(Section 2), as well as the new proposed feature (Section 3) 
for modulation recognition. Further, we describe briefly the 
support vector machine (SVM) algorithm (Section 4). 
Finally, we present and comment on simulation results 
(Section 5).  

2. SIGNAL MODEL

We consider the following complex baseband discrete-
time signal                                                                       
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s k x k v k                              (1) 
where ( )x k  is the transmitted signal such that 

1 ( )( ) ( )
0

N j kn cx k e P k nT
n

 .           (2) 

n  is the phase of the modulating signal. c  is the initial 
phase and  is the carrier offset. As in the majority of 
relevant literature, ( )P k nT  is the rectangular pulse shape 
function defined as
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and T is the number of samples per symbol period. ( )v k is
assumed to be complex white Gaussian noise with the real 
and imaginary part having the same variance equal to 

2 / 2 .

3. PROPOSED FEATURE

The modulation recognition is based on the following signal 
feature
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 Applying F on PSK signals and assuming ( ) 0v k  yields  
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Next, we take the sample kurtosis of (5) 
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Expanding (6), assuming 1NT  and using the law of 
large numbers we have 
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The law of large number can be applied in this case based 
on results in [5], [6].  

Calculating the second and fourth moments in (8) is 
straightforward. Assuming 0  we determine the second 
and fourth moments in the PSK2 signal case as 

( )2 22 2kE F p ,                                  (9) 

( )4 2 48 16 8kE F p p                   (10) 

where p  is the ratio of symbol rate to sampling rate. In the 
case of PSK4 signals the second moment is given by  (9) 
and the fourth moment is 

4 2 4( ) 6 16 8E F k p p .                 (11) 

On the other hand, it is difficult to determine closed-form 
expression for the first and third moments of (5). Therefore 
we calculated them using numerical integration.  By letting 

( ) ( ) ( 1)y k x k x k  and ( ) ( ) ( 1)w k v k v k  we 
modify (4) by using the cosine theorem such that 
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where ( )| |y k  is a discrete random variable, ( )w k  is a 
Rayleigh random variable and  is uniformly distributed 
over [0, 2 ) . ( )| |y k , ( )| |w k  and  are independent.  
Next, we average over ( )| |y k assuming PSK2 is present 
and given ( )| |w k  and :
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Following that, we average over ( )| |w k  and 
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 where (| ( ) |)f w k  is the probability density function of the 
random variable ( )| |w k . Applying the change of variable 
rule of integration in  (14)
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where 2( )| |V w k . Similarly  
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In the case of PSK4 we obtain 
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Figure 1: Kurtosis of ( )F k  for 6000 PSK2 and PSK4 signals. 
3000 realizations for each modulation. Solid lines with * are the 
mean and the dotted lines are the mean+standard deviation and the 
mean-standard deviation, all obtained by simulation. Solid lines 
with o are the calculated theoretical curves. 0 and p=.2.
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Similarly, in the case of PSK4  
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Figure 1 and 2 show (8) as function of SNR. In Figure 1, 

.2p  and in Figure 2, 1p . From the figures it is clear 
that the theoretical curves match the simulation results. Also 
it is clear that for high SNR we can distinguish between 
PSK2 curves and PSK4 curves.

4. SUPPORT VECTOR MACHINE CLASSIFICATION

Support vector machine (SVM) is an empirical data 
modeling algorithm that can be applied in classification 
problems. The first objective of the Support Vector 
Classification (SVC) is the maximization of the margin 
between the two nearest data points belonging to two 
separate classes. The second objective is to constrain that all 
training data points belong to the right class. It is a two-
class

Figure 2:  Kurtosis of ( )F k  for 6000 PSK2 and PSK4 signals. 
3000 realizations for each modulation. Solid lines with * are the 
mean and the dotted lines are the mean+standard deviation and the 
mean-standard deviation, all obtained by simulation. Solid lines 
with o are the calculated theoretical curves. 0 and p=1.

approach which can use multi-dimensions features. The two 
objectives of the SVC problem are then incorporated into an 
optimization problem. This is done by constructing the dual 
and primal problem of the classical Lagrangian problem 
with transferring the constraint of the second objective to 
become constraints on the Lagrange variables. The complete 
derivation of SVC is given in [7], [8]. 

5. SIMULATION AND DISCUSSION 

We compare the performance of the proposed-feature 
classifier with different previously proposed classifiers. The 
classifiers include the maximum likelihood classifier 
proposed in [1], the qLLR classifier proposed in [2] and the 
modified cumulant based classifier proposed in [3]. In our 
cumulant based classifier a training set is used to construct 
the SVM classifier. This is different from what was used 
originally in [3] where the classification was based on 
theoretical asymptotic thresholds. Similarly, a training set 
was used to construct the proposed-feature classifier. The 
performances of these classifiers are shown in Figure 3 and 
4.

To make a comprehensive comparison between the 
classifiers we need to determine the amount of information 
required for the classifiers to work from the receiver point 
of view. The receiver of the maximum likelihood classifier 
needs to know noise power and all signal parameters, i.e., 
carrier frequency, amplitude, symbol rate, initial phase, time 
offset and the values of the signal constellation points. The 
qLLR classifier works unaided by the knowledge of initial 
phase. Finally, in the case of cumulant based classifier and 
proposed-feature classifier, the values of the signal 
constellation points and the random initial phase ( c) are not 
needed.
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Figure 3:  Probability of misclassification ( Pe ) for 2000 PSK2 and 
PSK4 signals. 1000 realizations for each modulation. 
“ ML 0 ” represents the maximum likelihood classifier 
designed for 0 , “ Proposed Feature 0 ” represents the 
SVM classifier whose input feature is the proposed feature and 
constructed based on 0  and SNR= 10dB, and 
“ Cumulants 0 ” represents the SVM classifier whose input 
feature is the cumulants based feature proposed in [3] and 
constructed based on 0 and SNR= 10dB . “qLLR” is the quasi 
log likelihood ratio classifier proposed in [2]. p=.2 and N=500. 

Figure 3 shows the performance of the classifiers for 
different . Out of the four classifiers the proposed feature 
classifier has the best performance. In the case of the 

cumulant based classifier, the 21 ( ) /0
TN s k TNk  term in 

the fourth order cumulant used to distinguish PSK2 from 
PSK4 causes the deterioration of performance when 0 .
In the case of 0  for noiseless PSK2 signal

11 2 ( ) 1
0

NT
s k

kNT
   .                         (19) 

From the figures it is clear that for 0  the maximum 
likelihood classifier has 0 probability of error. However as 

 increases  the  performance  of  the  classifier deteriorates 
until it reaches .5 probability of misclassification.  

Increasing  causes the qLLR classifier to deteriorate 
in performance. It should be noted that in the qLLR case 
even for  0  the probability of error does not reach 0. 
The performance worsens as p increases. This happens since 
when we increase the value of p, we decrease the number of 
samples in the averaging process used in the qLLR 
classifier. This affects the approximation used in the 
algorithm.  

The proposed feature classifier shows robust 
performance for small . For example, in Figure 3 the 
proposed classifier has a probability of error less than .2 
for 0.3 .

Figure 4:  Probability of misclassification ( Pe ) for 2000 PSK2 and 
PSK4 signals. 1000 realizations for each modulation. Acronyms 
are the same as for Figure 3. p=1 and N=500.

6. CONCLUSION

In this paper we proposed a simple feature to distinguish 
between PSK2 and PSK4 modulations. The feature is based 
on the kurtosis estimate for the subtractions of two 
consecutive signal values. Following that we studied the 
performance of the SVM classifier whose input is the 
proposed feature for different . Moreover, we compared 
the SVM classifier to other, previously proposed in 
literature, classifiers. The simulation results showed that the 
SVM classifier whose input is the proposed feature, is 
robust with respect to  when compared to the other 
classifiers.
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