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ABSTRACT

In the new generation wireless communication systems where high
data rates are desired, Orthogonal Frequency Division Multiplexing
(OFDM) has become the standard method because of its advantages
over single carrier modulation schemes on multi-path, frequency se-
lective fading channels. However, inter-carrier interference due to
Doppler frequency shifts, and multi-path fading severely degrades
the performance of OFDM systems. Estimation of channel param-
eters is required at the receiver. In this paper, we present a time-
varying channel modeling and estimation method based on the Dis-
crete Evolutionary Transform that provides a time-frequency proce-
dure to obtain a complete characterization of a multi-path, fading and
frequency selective channel. Performance of the proposed method is
tested on different levels of channel noise, and Doppler frequency
shifts.

Index Terms— Time-varying channel modeling, Time-frequency
analysis, OFDM systems

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is considered
an effective technique for broadband wireless communications be-
cause of its great immunity to fast fading channels and inter-symbol
interference (ISI). It has been adopted in several wireless standards
such as digital audio broadcasting (DAB), digital video broadcast-
ing (DVB-T), the wireless local area network (W-LAN) standard;
IEEE 802.11a, and the metropolitan area network (W-MAN) stan-
dard; IEEE 802.16a [1, 2]. OFDM partitions the entire bandwidth
into parallel subchannels by dividing the transmit data bitstream into
parallel, low bit rate data streams to modulate the subcarriers of
those subchannels. However, inter-carrier interference (ICI) due to
Doppler shifts, phase offset, local oscillator frequency shifts, and
multi-path fading severely degrades the performance of multi-carrier
communication systems [1, 3]. For fast-varying channels, especially
in mobile systems, large uctuations of the channel parameters are
expected between consecutive transmit symbols. Estimation of the
channel parameters is required to employ coherent receivers. Most
of the channel estimation methods assume a linear time–invariant
model for the channel, which is not valid for fast varying environ-
ments [4, 5]. A complete time-varying model of the channel can
be obtained by employing time-frequency representation methods.
We present a time–varying channel modeling and estimation method
based on the discrete evolutionary representation of channel out-
put. The Discrete Evolutionary Transform (DET) provides a time-
frequency representation of the received signal by means of which
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the spreading function of the multi-path, fading and frequency-selective
channel can be modeled and estimated.

2. WIRELESS CHANNEL MODEL

In wireless communications, the multi-path, fading channel with
Doppler frequency shifts may be modeled as a linear time-varying
system with the following discrete-time impulse response [6, 7]

h(m, �) =

L−1∑
i=0

αi ejψim δ(� − Ni) (1)

where L is the total number of transmission paths, ψi represents the
Doppler frequency, αi is the relative attenuation, and Ni is the time
delay caused by path i. The Doppler frequency shift ψi, on the car-
rier frequency ωc, is caused by an object with radial velocity υ and
can be approximated by ψi

∼= υ
c

ωc where c is the speed of light
in the transmission medium [7]. In wireless mobile communication
systems, with high carrier frequencies, Doppler shifts become signif-
icant and have to be taken into consideration. Time-varying channel
parameters cannot be easily estimated in the time-domain, however
the estimation problem can be solved in the time-frequency domain
by means of the so called spreading function which is related to the
time-varying frequency response and the bi-frequency function of
the channel. Time-varying transfer function of this linear channel
is calculated by taking the discrete Fourier transform (DFT) of the
impulse response with respect to �, i.e.,

H(m, ωk) =

L−1∑
i=0

αi ejψim e−jωkNi (2)

where ωk = 2π
K

k, k = 0, 1, · · · , K − 1. Now, the bi-frequency
function is found by computing the discrete Fourier transform of
H(m, ωk) with respect to time variable,m:

B(Ωs, ωk) =

L−1∑
i=0

αie
−jωkNiδ(Ωs − ψi). (3)

and Ωs =
2π
K

s, k = 0, 1, · · · , K − 1. Furthermore, the spread-
ing function of the channel is obtained by calculating the DFT of
h(m, �)with respect tom, or by taking the inverse DFT ofB(Ωs, ωk)
with respect to ωk;

S(Ωs, �) =

L−1∑
i=0

αiδ(Ωs − ψi)δ(� − Ni) (4)

which displays peaks located at the time-frequency positions deter-
mined by the delays and the corresponding Doppler frequencies, and
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with αi as their amplitudes [7]. If we extract this information from
the received signal, we will be able to eliminate the effects of the
time-varying channel and estimate the transmitted data symbol.

3. OFDM SYSTEMMODEL

In an OFDM communication system, the available bandwidth Bd is
divided into K subchannels. The input data is also divided into K-
bit parallel bit streams, and then mapped onto some transmit symbols
Xn,k drawn from an arbitrary constellation points where n is the
time index, and k = 0, 1, · · · , K − 1, denotes the frequency or sub-
carrier index. We then insert some pilot symbols, pn,k ∈ {−1, 1}
at some pilot positions (n′, k′), known to the receiver: (n′, k′) ∈
P = {(n′, k′)|n′ ∈ Z, k′ = iS + (n′mod(S)), i ∈ [0, P − 1]}
where P is the number of pilots, and the integer S = K/P is the
distance between adjacent pilots in an OFDM symbol [8].

The nth OFDM symbol sn(m) is obtained by taking the inverse
DFT and then adding a cyclic pre x of length LCP where LCP is
chosen such that L ≤ LCP + 1, and L is the time-support of the
channel impulse response. This is done to mitigate the effects of
intersymbol interference (ISI) caused by the channel time spread [1,
2].

sn(m) =
1√
K

K−1∑
k=0

Xn,kejωkm (5)

m = −LCP ,−LCP+1, · · · , 0, · · · , K−1where again ωk =
2π
K

k,
and each OFDM symbol has N = K + LCP length. The channel
output suffers from multi-path propagation, fading and Doppler fre-
quency shifts:

yn(m) =

L−1∑
�=0

h(m, �) sn(m − �)

=

L−1∑
i=0

αi ejψim sn(m − Ni)

=
1√
K

K−1∑
k=0

Xn,k

L−1∑
i=0

αi ejψim ejωk(m−Ni)

=
1√
K

K−1∑
k=0

Hn(m, ωk) e
jωkm Xn,k (6)

The transmit signal is also corrupted by additive white Gaussian
noise η(m) over the channel. The received signal for the nth frame
can then be written as rn(m) = yn(m) + ηn(m). The receiver dis-
cards the Cyclic Pre x and demodulates the signal using a K-point
DFT as

Rn,k =
1√
K

K−1∑
m=0

[yn(m) + ηn(m)] e−jωkm

=
1

K

K−1∑
s=0

Xn,s

L−1∑
i=0

αi e−jωsNi

×
K−1∑
m=0

ejψim ej(ωs−ωk)m + Zn,k. (7)

If the Doppler effects in all the channel paths are negligible, ψi =
0, ∀i, then the channel is almost time–invariant within one OFDM

symbol. In that case, above equation becomes

Rn,k = Xn,k

L−1∑
i=0

αi e−jωkNi + Zn,k

= Xn,k Hn,k + Zn,k (8)

whereHn,k is the channel frequency response, andZn,k is the Fourier
transform of the channel noise. By estimating the channel frequency
response coef cientsHn,k, data symbols,Xn,k, can be recovered by
a simple equalizer, X̂n,k = Rn,k/Hn,k. However, if there are large
Doppler frequency shifts in the channel, then the time–invariance as-
sumption above is no longer valid. Here we consider time–varying
channel modeling and estimation and approach the problem from a
time–frequency point of view [7, 9].

4. TIME-VARYING CHANNEL ESTIMATION FOR OFDM
SYSTEMS

In the following we brie y explain the Discrete Evolutionary Trans-
form as a tool for the time–frequency representation of wireless chan-
nel output.

4.1. Time-Frequency Analysis by DET

A non-stationary signal, x(n), 0 ≤ n ≤ N − 1, may be represented
in terms of a time-varying kernel X(n, ωk) or its corresponding bi-
frequency kernel X(Ωs, ωk). The time–frequency discrete evolu-
tionary representation of x(n) is given by [10],

x(n) =

K−1∑
k=0

X(n, ωk)e
jωkn, (9)

where ωk = 2πk/K, K is the number of frequency samples, and
X(n, ωk) is the evolutionary kernel. The discrete evolutionary trans-
formation (DET) is obtained by expressing the kernel X(n, ωk) in
terms of the signal. This is done by using conventional signal rep-
resentations [10]. Thus, for the representation in (9), the DET that
provides the evolutionary kernelX(n, ωk), 0 ≤ k ≤ K−1, is given
by

X(n, ωk) =

N−1∑
�=0

x(�)wk(n, �)e−jωk�, (10)

where wk(n, �) is, in general, a time and frequency dependent win-
dow. Details of how the windows can be obtained are given in [10].
However, for the representation of multipath wireless channel out-
puts, we need to consider signal-dependent windows that are adapted
to the Doppler frequencies of the channel.

4.2. OFDM Channel Estimation

We will now consider the computation of the spreading function by
means of the evolutionary transformation of the received signal. The
output of the channel, after discarding the cyclic pre x, for the nth

OFDM symbol can be written as,

yn(m) =
1√
K

L−1∑
i=0

K−1∑
k=0

αi ejψim ejωk(m−Ni)Xn,k (11)
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Now calculating the discrete evolutionary representation of yn(m),
we get

yn(m) =

K−1∑
k=0

Yn(m, ωk)e
jωkm

=
1√
K

K−1∑
k=0

Hn(m, ωk)Xn,kejωkm (12)

The above equation can also be given in a matrix form as,

y = Ax (13)

where

y = [yn(0), yn(1), . . . , yn(K − 1)]T ,

x = [Xn,0, Xn,1, . . . , Xn,K−1]
T ,

A = [am,k]K×K = Hn(m, ωk) e
jωkm.

If the time-varying frequency response of the channelHn(m, ωk) is
known, thenXn,k may be estimated by

x̂ = A−1y. (14)

A time-frequency procedure to estimate Hn(m, ωk) is explained in
the following. Comparing the representations of yn(m) in (11) and
(12), we get the kernel as

Yn(m, ωk) =
1√
K

L−1∑
i=0

αi ejψim e−jωkNiXn,k (15)

Finally, the channel frequency response is

Hn(m, ωk) =

√
K Yn(m, ωk)

Xn,k
(16)

The evolutionary kernel Yn(m, ωk) can be calculated directly form
yn(m) [10] and channel parameters α�, ψ�, and N� can be obtained
form the spreading function S(Ωs, �). According to (16), we need
the input data symbols Xn,k to estimate the channel frequency re-
sponse. This can be achieved by estimating the frequency response
Hn,k by using any of the pilot aided channel estimation methods
[2, 5], and using it to get a rough estimate of Xn,k. Then the de-
tected data can be used for the estimation of the spreading function
via (16). The DFT of H(m, ωk) with respect to m, gives the bi-
frequency function B(Ωs, ωk), and the inverse DFT with respect to
ωk, gives us the spreading function S(Ωs, �) from which all the pa-
rameters of the channel will be obtained and the transmitted data
symbol will be detected.

The time-frequency evolutionary kernel of the channel output is
obtained by replacing yn(m) in equation (10), or

Yn(m, ωk) =

K−1∑
�=0

yn(�)wk(m, �)e−jωk�

=
1√
K

K−1∑
s=0

Xn,s

L−1∑
i=0

αie
−jωsNi

×
N−1∑
�=0

wk(m, �)ej(ψi+ωs−ωk)� (17)

We consider windows of the form wp(m, �) = ejψp(m−�), for 0 ≤
ψp ≤ π presented in [9] that depends on the Doppler frequency ψp.

This window will give us the correct representation of Yn(m, ωk)

only whenψp = ψi, in fact, using the windowwi(m, �) = ejψi(m−�),
above representation of Yn(m, ωk) becomes,

Yn(m, ωk) =
√

K

L−1∑
i=0

αie
j(ψim−ωkNi) Xn,k

which is the expected result multiplied byK.

4.3. Time-Frequency Receiver

After estimating the spreading function and the corresponding fre-
quency responseHn(m, ωk) of the channel, data symbolsXn,k can
be detected using a time-frequency receiver given in (14). In fact,
the channel output in equation (7) can be rewritten as

Rn,k =
1

K

K−1∑
s=0

{
K−1∑
m=0

Hn(m, ωk)e
j(ωs−ωk)m

}
Xn,s + Zn,k

=
1

K

K−1∑
s=0

Bn(ωs − ωk, ωk)Xn,s + Zn,k. (18)

whereBn(Ωs, ωk) is the bi-frequency function of the channel during
nth OFDM symbol, and above equation indicates a circular convolu-
tion with the data symbols. It is possible to write the above equation
in a matrix form as

r = Bx+ z (19)
whereB = [bs,k]K×K = Bn(ωs−ωk, ωk) is aK × K matrix and,
r , x and z areK × 1 vectors de ned by r = [Rn,1, Rn,2, . . . , Rn,K ]

T ,
x = [Xn,1, Xn,2, . . . , Xn,K ]

T , and z = [Zn,1, Zn,2, . . . , Zn,K ]
T re-

spectively. Finally, data symbols Xn,k can be estimated by using a
simple time–frequency equalizer

x̂ = B−1 r

which is an extension of the LTI channel equalizer to the time-varying
channel model given in (1).

5. SIMULATIONS

In the experiments, the wireless channel is simulated randomly, i.e,
the number of paths, 1 ≤ L ≤ 5, the delays, 0 ≤ Ni ≤ LCP −1 and
the doppler frequency shift 0 ≤ ψi ≤ ψmax, i = 0, 1, · · · , L − 1
of each path are picked randomly. Input data is BPSK coded and
modulated onto K = 128 sub-carriers, 12 % of which is assigned
to the pilot symbols. The OFDM symbol duration is chosen to be
T = 200μs, and TCP = 50μs. Frequency spacing between the
sub-carriers is F = 5kHz. First, the Signal-to-Noise Ratio (SNR)
of the channel noise is changed between 0 and 15dB, for xed val-
ues of the maximum doppler ψmax on each path, and the bit error
rate (BER) is calculated by four different approaches: 1) No Chan-
nel Estimation, 2) Pilot Symbol Assisted (PSA) Channel Equaliza-
tion 3) Proposed Approach, and 4) Known Channel parameters. The
spreading function, hence all the parameters of the channel are esti-
mated by the proposed method. Fig. 1 shows the BER versus SNR
for maximum Doppler frequency ψmax = 500Hz. Notice that our
proposed method outperforms the PSA channel estimation even with
low SNR values. Finally, the SNR is xed to 15dBwhile the normal-
ized Doppler frequency is rst changed between 50Hz and 500Hz,
then between 500Hz and 3500Hz. BER is calculated for each of the
above methods and given in Fig. 2 and Fig. 3 respectively. We see
that the performance degrades for large Doppler frequency shifts for
all methods.
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6. CONCLUSIONS

In this work, we present a time-varying modeling of the multi-path,
fading OFDM channels with Doppler frequency shifts by means of
discrete evolutionary transform of the channel output. This approach
allows us to obtain a representation of the time-dependent channel
transfer function from the noisy channel output. At the same time,
using the estimated channel parameters, a better detection of the in-
put data can be achieved. Examples show that, our method has a
considerably better BER performance than PSA channel estimation.
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Fig. 1. BER versus SNR for ψmax = 500Hz.
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Fig. 2. BER versus ψmax = [50− 500] Hz.
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Fig. 3. BER versus ψmax = [500− 3500] Hz.
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