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ABSTRACT

In urban areas, multipath (MP) is one of the main error sources when
tracking signals used in global navigation satellite systems. The re-
ceived signals subjected to MP are the sum of several delayed repli-
cas leading to biased estimations. This paper studies a Sequential
Monte Carlo (SMC) algorithm which mitigates MP effects. The
proposed algorithm is based on a state-space model associated to a
multicorrelator GPS receiver and on a Rao Blackwellized technique
which allows to achieve good performance.

Index Terms— Global Positioning System, Monte Carlo meth-
ods, Multipath, Sequential estimation

1. INTRODUCTION
The con dence in the computed position must be high for many
professional applications based on satellite navigation technology.
These applications include safety of life (like automated plane land-
ing) and liability critical (like road tolling or offender tracking) ser-
vices. For safety of life applications, an error in the computation
of the position can lead to highly dangerous situations. For liability
critical applications, an error can be responsible for nancial losses
or criminal prosecution. Thus, there is a need for developing algo-
rithms ensuring an accurate positioning in real time. Mitigating MP
effects at the GPS receiver is a critical issue to obtain this high accu-
racy, which will be used to prevent potentially damaging decisions.

On-board GPS receivers measure propagation delays of satel-
lite signals. The problem of delay estimation is solved on-line by
early-late correlators that drive tracking loops in charge of align-
ing the incoming signals and local replicas. If the received signal is
degraded by MP, the shape of the correlation function is distorted,
which results in biased delay estimates. Different approaches have
been proposed in the literature to mitigate MP effects. A rst class
of methods consists of deriving new delay estimation techniques ap-
propriate to GPS signals corrupted by MP. For instance, the shape of
the correlation function can be adjusted to estimate the delay associ-
ated to the line-of-sight (LOS) signal. This kind of method has led
to the narrow correlator [1] and the edge and strobe correlators [2].
Some alternatives aim at estimating jointly the direct and re ected
signal parameters, for instance by using a maximum likelihood tech-
nique [3]. The advent of multicorrelator receivers has widened the
range of possible solutions for handling GPS signals in presence of
MP. Indeed, these receivers allow to fully characterize MP effects by
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providing samples of the whole correlation function. These samples
were recently processed with an extended Kalman lter (EKF) to
solve the joint direct/indirect path estimation problem [4]. However,
particle lters (PF) offer potential good solutions to this problem
since they allow to handle nonlinear measurement equations. The
main contribution of this paper is to study a Rao-Blackwellized PF
for multicorrelator GPS signals and to compare its performance with
the EKF.

The paper is organized as follows: Section 2 presents the mathe-
matical model for the GPS signal at the output of the multicorrelator
receiver. Section 3 studies a sequential Monte Carlo (SMC) tech-
nique for MP mitigation. Simulation results are presented in Section
4. Conclusions and perspectives are reported in Section 5.

2. SIGNAL MODEL
In the absence of MP, the received GPS signal corresponding to a
given satellite can be written

s(t− τ) = Ad(t− τ)c(t− τ) cos(2π(fc + fd)t + φ) + n(t),

whereA is the GPS signal amplitude, τ is the time of arrival (i.e., the
delay between the moment the signal was transmitted by the satellite
and its arrival to the GPS receiver), fc is the GPS carrier frequency,
fd is the Doppler frequency, φ is the signal phase, d(t) is the data
sequence, c(t) is the PN sequence speci c to a given satellite and
n(t) is the additive noise affecting the GPS signal.

In an urban medium, the received signal is composed of a line-
of-sight (LOS) signal and delayed replicas due to MP. Assume that
the receiver is locked at every sampling time to an estimated LOS
frequency and that the received signal consists of a LOS andM re-
ected signals. The resultant in-phase baseband signal at the receiver
can be expressed as:

sI(t− τ) = Ac(t− τ) cos(2π �ft + φ)+

M�
i=1

Aic(t− τ − αi) cos(2π �fit + φi) + nI(t), (1)

where �f is the difference between the actual LOS Doppler frequency
fd and its estimate f̂d, the subscript i corresponds to the ith re ected
signal, Ai is the ith MP amplitude, αi is the relative delay between
the LOS and the ith MP signal, �fi is the ith MP error Doppler fre-
quency and φi is the ith MP phase. Note that the data sequence
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d(t), being of low frequency, is no longer present in (1) because it
has been ltered at the frequency converter stage. Note also that
the quadrature baseband signals can be expressed similarly to (1) by
changing cos(.) to sin(.).

2.1. Receiver Tracking Loop

The general GPS receiver is formed by several parallel channels,
each of them tracking one of the LOS satellite signals. Assuming
the cross-correlation between different satellites codes is negligible,
each of the arriving signals can be independently analyzed as pro-
posed in this paper. Moreover, we assume that a multicorrelator
tracking loop is used in the receiver for the estimation of the sig-
nal parameters (see Fig. 1). After multiplying the signal by in-phase
and quadrature carrier replicas, the I and Q components are formed.
These components are then correlated with J different delayed repli-
cas of the code characterized by different delays δ1, ..., δJ . This re-
sults in J in-phase signals de ned as:

Iδj
=

A

2
R(�τ + δj)sinc(π �fT ) cos(π �fT + �φ) (2)

+

M�
i=1

Ai

2
R(�τ − αi + δj)sinc(π �fiT ) cos(π �fiT + �φi) + nj

I(t),

where R(τ) is the autocorrelation function of the satellite code, T
is the integration time for the correlation computation, �τ = τ − τ̂ ,�φ = φ − φ̂. The J in-quadrature signals are obtained similarly
by changing cos(.) to sin(.) and nj

I(t) by nj
Q(t) in (2). The noise

sequences nj
I and nj

Q are assumed to be i.i.d. noise sequences.
By concatenating eq’s (2) for j = 1, ..., J and the corresponding
in-quadrature equations, the following measurement equation is ob-
tained:

yk = h(xk) + nk, (3)
where xk is the unknown parameter vector, h(·) is a non-linear func-
tion and nk contains all noise terms. This paper assumes that the
noise vector nk is a zero-mean Gaussian vector whose covariance
matrix is Rn = σ2

nI2J (where I2J is the (2J) × (2J) identity ma-
trix). The GPS state vector xk is de ned as follows:

xk = [τk, vk, Ak, φk, αMP
k , vMPk , AMP

k , φMP
k ]T , (4)

where the exponent MP stands for the MP parameters, τk, Ak, φk

are the LOS parameters (time of arrival, amplitude and phase) at
time instant k, vk is the pseudo velocity at time k (related to the
Doppler frequency by fd = −(fc/c)v, where c is the speed of
light) and αMP

k = (α1,k, ..., αM,k)T , AMP
k = (A1,k, ..., AM,k)T ,�fMPk = ( �f1,k, ..., �fM,k)T and φMP

k = (φ1,k, ..., φM,k)T are the MP
vectors containing delays, amplitudes, Doppler frequency errors and
phases at time instant k. Note that the GPS state vector xk belongs
to R

4(M+1), where M is the number of MP delayed replicas. Note
also thatM is assumed to be known in this paper. However, this as-
sumption could be relaxed by implementing a model order selection
rule. The interested reader is invited to consult the review paper [5]
for more details.

2.2. State Space Model

The tracking problem is de ned by the evolution of the following
state space model

xk = Fkxk−1 + uk, (5)
where xk is the state vector de ned in (4). The state equation is
assumed to be linear with a time independent state matrix Fk =

Fig. 1. Multicorrelator receiver structure.

F and the noise sequence uk is a zero mean Gaussian sequence
with known covariance matrix Q. This paper focuses on a constant
acceleration model where F andQ are de ned as follows:
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where ΔT is the sampling period. The matrix C ′ is obtained by re-
placing σa in C by σa[MP ]. This model is associated to a vehicle
whose dynamics are described by a random Gaussian acceleration
(with zero mean and variance σ2

a). The dynamics of the MP param-
eters are also described by a random Gaussian acceleration model.
However, the variance σa[MP ] associated to the MP parameters is
smaller than the one proposed for the dynamics of the LOS parame-
ters, which is a reasonable assumption.

3. PARAMETER ESTIMATION

3.1. Particle Filter

This section brie y reminds the principles of particle ltering (PF)
(see [6] for more details). Particle ltering is a sequential Bayesian
Monte Carlo method which approximates the posterior density func-
tion p(x0:k|y0:k) (with the usual notation x0:k = (x0, ..., xk)) with
a set of weighted particles xi

0:k according to the following point
mass approximation:

p(x0:k|y0:k) ≈
N�

i=1

w(xi
0:k)δ(x0:k − x

i
0:k), (6)

where i = 1, ..., N and N is the number of particles. The parti-
cles are generated according to an appropriate importance density
function denoted as π(x0:k|y1:k) and the weights (referred to as im-
portance weights) are computed as follows:

w(xi
0:k) =

p(x0:k|y0:k)

π(x0:k|y0:k)
. (7)

Using Bayes rule, the evaluation of the importance weights can be
easily obtained recursively:

w(xi
0:k) ∝ w(xi

0:k−1)
p(yk|x

i
0:k, y1:k−1)p(xi

k|x
i
0:k−1)

π(xi
k|x

i
0:k−1, y1:k)

. (8)
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Particles with small (resp. large) importance weights correspond to
low (resp. high) posterior probabilities. A resampling step is clas-
sically introduced to avoid degeneracy problems that would arise in
the presence of many particles with small weights. The resampling
step creates replicas of the particles having large weights and dis-
cards particles with small weights. The idea is to concentrate parti-
cles in regions of the state space that are pertinent. This paper uses
the strati ed resampling procedure proposed by Kitagawa [7].

3.2. Rao-Blackwellized Particle Filter

Rao-Blackwellization is a variance reduction technique which can be
used ef ciently for conditionally linear Gaussian state space models
[6]. Assume that the state vector xk can be partitioned into two parts
x1

k and x2
k such that the state equation is linear with respect to x1

k

and nonlinear with respect to x2
k. Using the Bayes rule, the posterior

distribution of the state vector x0:k can be written:

p(x1
0:k, x2

0:k|y0:k) = p(x1
0:k|y0:k, x2

0:k)p(x2
0:k|y0:k). (9)

The Rao-Blackwellized PF estimates the posterior distribution of the
reduced state vector x2

k by a sequential Monte Carlo algorithm.

p(x2
k|yk, x2

0:k−1) �
N�

i=1

w
(i)
k δ(x2

k − x
2,i
k ). (10)

The posterior distribution p(x1
0:k|y0:k, x2

0:k) can then be approxi-
mated by a mixture of Gaussian distributions:

p(x1
k|yk, x2

0:k−1) �
N�

i=1

w
(i)
k N (mi

k|k,1, P
i
k|k,1), (11)

where mi
k|k,1 and P i

k|k,1 are computed by standard Kalman lter
recursions. Drawing particles from a lower-dimension space allows
a given accuracy to be obtained with a lower amount of particles. In
our application, the measurement equation de ned in (3) is clearly
linear with respect to the LOS andMP amplitudes and nonlinear with
respect to the other parameters, hence

x
1
k = (Ak, AMP

k )T ,

x
2
k = (τk, vk, φk, αMP

k , vMPk , φMP
k )T .

3.3. Importance density function

The choice of the importance distribution is one of the key factors for
the correct functioning of the particle lter. The idea is that the sup-
port of the importance distribution should have an overlapped region
(long tailed behavior) with the true pdf in order to avoid divergence.
In [6] the optimal importance distribution was shown to be:

π(xk|x0:k−1, y0:k) = p(xk|x0:k−1, y0:k), (12)

in the sense that it minimizes the variance of the importance weights
conditionally to the previous state and the measurement. This opti-
mal importance distribution can be evaluated by using (3) and (5),
up to a normalization constant. However, drawing samples accord-
ing to this distribution is a dif cult task. In such a situation, it is
usual to approximate the optimal importance distribution by local
linearization [6].

The local linearization procedure has been performed to obtain
the importance density function π(xk|x0:k−1, y0:k). However, spe-
ci c attention has been devoted to the MP delay parameter α. In-
deed, this parameter is subjected to constraints inherent to the MP

model related to the multicorrelator receiver. First, any re ected
path will arrive later than the LOS signal imposing the constraint
αi ≥ 0, for i = 1, ..., M . Moreover, the particular 2-chip wide
autocorrelation peak of the spreading GPS code imposes an upper
limit for parameters αi: αi ≥ 2Tchip, Tchip being the period of each
chip from the spreading code. Indeed, any value of αi ≥ 2Tchip
yields a re ected signal whose resultant autocorrelation from the
multicorrelator receiver is zero, i.e. not affecting the direct mea-
surement. This paper proposes to draw state vectors xk according to
the local linearization importance distribution and to reject the state
vectors which do not satisfy the constraints αi ∈ [0, 2Tchip]. The
resultant importance distribution π(xk|x0:k−1, y0:k) is a truncated
Gaussian distribution. An example of marginal proposal distribution
π(αk|x0:k−1, y0:k) is depicted on gure 2.

MP Delay

Truncated Gaussian pdf

2*(chip code period)

PDF

0

Fig. 2. Marginal importance density function for αk.

4. SIMULATION RESULTS

Several simulations have been conducted to validate the proposed
ltering solution. This paper assumes that the received GPS signal is
subjected to a single MP component (i.e.,M = 1). This assumption
is realistic in many scenarios since two re ected signals very close
in time can be estimated as one perturbation [3]. A realistic model
has been chosen for the vehicle dynamics de ned by σ2

a = 5m/s2.
The sampling period is ΔT = 1s and the other state parameters
are σ2

A = 0.01 and σ2
φ = 0.01. At the same time, a single MP

signal described by a weaker dynamic σa[MP ] = σa/10 has been
introduced. The signal to noise ratio is SNR = 10 log

�
A2/σ2

n

�
=

20dB whereas the signal to MP ratio is 20 log(A1/A) = 6dB. The
other MP parameters used in the simulations are α1 = 0.15Tchip,
φ1 = 0 and �f1 = �f .

The number of particles for the proposed implementation isNp =
1000. The results obtained with the proposed PF are compared
to both the posterior Cramer Rao bound (PCRB) and the extended
Kalman lter (EKF). The PCRB sets a lower limit on the variance
of any unbiased estimator [8]. The EKF represents nowadays a
standard navigation solution and is employed as a benchmark for
performance comparison. Figures 3 and 4 compare the root mean
square errors (RMSEs) of the EKF and the PF with the correspond-
ing PCRBs, when estimating the LOS parameter τ and the MP delay
α respectively. There is no clear difference between the EKF and the
PF for the estimation of τ , in this particular scenario. Indeed, both
RMSEs converge very quickly to the PCRBs. A small difference in
the convergence time can be observed for the estimation of α1.

A second scenario is then investigated where the MP component
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Fig. 3. RMSE for the LOS delay τ .
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Fig. 4. RMSE for the MP delay α1.

is not present all along the observation window (see gures 5 and 6).
More precisely, the MP component disappears at time instant t1 =
40 and re-appears at time instant t2 = 80. This simulation allows to
analyze the algorithm behavior when the observed signal is subjected
to nonstationarities. Note that the dimension of the state vector is
constant for each time instant (hereM = 1 hence xk ∈ R

8): the MP
parameters are estimated in the whole observation window and the
amplitude estimates should agree with the actual amplitude values,
i.e. A1,k = Ak/2 for k = 1, ..., 39, A1,k = 0 for k = 40, ..., 80
and A1,k = Ak/2 for k = 81, ..., 200. Figures 5 and 6 depict the
RMSEs associated to the estimation of parameters τ and α1 obtained
with the EKF and the PF. Similar results would be obtained for the
other parameters. They are not presented here for brevity. Fig. 6
clearly shows that the EKF is not able to track the abrupt changes in
the measurements leading to a divergent estimation of the MP delay,
contrary to the PF. The PF should provide reliable estimations when
the GPS signal is acquired in changing environments.

5. CONCLUSIONS

Multipath (MP) is one of the main error sources when GPS signals
are used for positioning and navigation. This paper studied a se-
quential Monte Carlo algorithm which mitigates MP effects. An ex-
tended state vector including the MP parameters was estimated by a
Rao-Blackwellized particle lter (PF). The proposed PF methodol-
ogy provided lower acquisition time when compared to the extended
Kalman lter (EKF). Thus, the proposed algorithm seems to be a
promising alternative to the EKF for applications requiring instanta-
neous on-line estimations. The proposed PF also showed interesting
properties when the received GPS signals are contaminated by MP
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Fig. 5. RMSE for the LOS delay τ .
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Fig. 6. RMSE for the MP delay α1.

components appearing and disappearing at unknown time instants.
Indeed, the robustness of the PF to abrupt changes was clearly out-
lined when compared to the EKF. Further investigations include de-
tecting MP presence/absence and estimating the number of replicas
contained in the received GPS signals.
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