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ABSTRACT

We propose in this paper a new particle ltering algorithm
for blind equalization of FIR frequency-selective communi-
cation channels corrupted by additive Gaussian noise, assum-
ing that both the channel order and noise variance are un-
known. The proposed algorithm integrates out analytically
the unknown parameters using a modi ed sequential impor-
tance sampling technique. We verify via numerical simula-
tions that the proposed method leads to near optimal perfor-
mance, greatly outperforming traditional methods under noise
variance mismatch.

Index Terms— Adaptive equalizers, Sequential estima-
tion, Monte Carlo methods, Bayes procedures.

1. INTRODUCTION

Particle lters have been extensively applied to solving blind
equalization [1] [2] and related problems [3] on frequency-
selective channels contaminated by Gaussian noise. How-
ever, differently from methods based on other techniques like
MCMC [4], currently available particle lter methods require
exact knowledge of the channel’s additive noise variance, and
can be shown to perform rather poorly when incorrect values
are assumed for that quantity.

In this work, we ll this gap, developing an algorithm for
blind equalization under unknown variance additive Gaussian
noise. We start by developing an alternative method for op-
timal importance function and weight computation, and next
evaluate the probability distributions needed for its applica-
tion to the adopted signal model. While the proposed alterna-
tive method requires much simpler analytical evaluations, we
verify that it does not incur in increased computation com-
plexity or performance degradation compared to the existing
methods.

The remainder of this article is organized as follows: in
Sec. 2 we describe the adopted signal model and estimation
objectives. After brie y reviewing elements of particle l-
ter theory in Sec. 3, we describe the proposed sequential im-
portance sampling method and present a recursive method
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for evaluating the needed probability densities in Sec. 4. Fi-
nally, in Sec. 5, we evaluate the performance of the proposed
methods via numerical simulations, leaving our conclusions
to Sec. 6.

2. PROBLEM DESCRIPTION

Let bn be an independent, identically distributed (i.i.d.) bi-
nary bit sequence and sn ∈ {±1} the corresponding (i.i.d.)
differentially encoded symbols [5]. Our aim in this work is
to develop a recursive method for obtaining MAP smoothed
estimates

b̂n−d = argmax
bn−d

p(bn−d|y0:n) , (1)

for d ∈ N
+. The observations y0:n � {y0, ..., yn} are as-

sumed to be the output of the additive noise frequency selec-
tive FIR channel

yn =
L−1∑
i=0

hisn−i + vn , (2)

where L is the channel order, restricted to a known set L, hi

are the (time-invariant) unknown channel impulse response
terms, and vn represents a Gaussian i.i.d zero-mean random
noise process of unknown variance σ2. For convenience, we
rewrite (2) so that yn is expressed as the output of the dynamic
system {

Sn+1 = DSn + [sn+1 0 . . . 0]T

yn = hT Sn + vn
(3)

where h � [h0 . . . hL−1]T , Sn � [sn . . . sn−L+1]T , and D ∈
R

L×L is a displacement matrix1. The unknown parameters
h, σ2 and L are assumed to be, in turn, distributed a priori
according to

p(σ2) = IG(σ2|α;β) � βα

Γ(α)
(σ2)−(α+1) exp

(
− β

σ2

)
(4)

p(L) = T P(L|λ;L) � λL

cL,λ L!
I {L ∈ L} (5)

p(h|L, σ2) = NL(h|0; Iσ2/ε2) (6)

1An all-zero matrix except for its rst lower diagonal, whose entries are
unitary.
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where N stands for a normal, IG an inverted-gamma, and
T P a truncated Poisson distribution, I {A} for the indicator
of event A and cL,λ is a normalizing term that does not depend
on L.

3. PARTICLE FILTERS

Particle lters [6] are now a well-established numerical tech-
nique for solving stochastic ltering problems, i.e., estimat-
ing a sequence of hidden variables S0:n from the observations
y0:n, approximating the inferred variable posterior density via
the weighted sum

p(S0:n|y0:n) ≈
1∑P

i=1 w
(i)
n

P∑
i=1

w(i)
n δ

(
S0:n − S

(i)
0:n

)
, (7)

where P � 1, δ(.) denotes the Dirac delta function, S
(i)
0:n

are the particles, random samples of π(S(i)
0:n|y0:n) (importance

function) and

w(i)
n � p(S(i)

0:n|y0:n)/π(S(i)
0:n|y0:n) (8)

their respective weights. By de ning the importance function
as a product of marginals

π(S(i)
0:n|y0:n) �

n∏
j=0

π(S(i)
j |S

(i)
0:j−1, y0:j) , (9)

recursive approximations to p(S0:n|y0:n) can be obtained as

S(i)
n ∼ π(S(i)

n |S
(i)
0:n−1, y0:n) (10)

w(i)
n ∝ w

(i)
n−1

p(S(i)
n , yn|S(i)

0:n−1, y0:n−1)

π(S(i)
n |S(i)

0:n−1, y0:n)
(11)

A problem with the traditional particle lter formulation of
(10)-(11) is that p(S(i)

n , yn|S(i)
0:n−1, y0:n−1)may not be always

simple to determine, which could impede the application of
this inference technique to many speci c inference problems.

4. PROPOSED METHOD

Supposing that p(S(i)
0:n, y0:n) can be determined for all n > 0,

it can be veri ed that

w(i)
n = w

(i)
n−1

p(S(i)
0:n|y0:n)

p(S(i)
0:n−1|y0:n−1)π(S

(i)
n |S(i)

0:n−1, y0:n)
(12)

∝ w
(i)
n−1

p(S(i)
0:n, y0:n)

p(S(i)
0:n−1, y0:n−1)π(S

(i)
n |S(i)

0:n−1, y0:n)
(13)

While (12) is a consequence of (8) and (9), the proportionality
sign in (13) accounts for the multiplying term p(yn|y0:n−1),

common to all particles. The optimal importance function [6],
in turn, can be obtained as

p(S(i)
n |S

(i)
0:n−1, y0:n) =

p(S(i)
0:n, y0:n)∑

∀S
(i)
n

p(S(i)
0:n, y0:n)

. (14)

Obviously, this alternative formulation only makes sense when
p(S(i)

0:n, y0:n) can be recursively determined. It is also worth

stressing that although this method requires that p(S(i)
0:n, y0:n)

can be directly evaluated, approximations such (7) are still
needed as the number of possible sequences S

(i)
0:n grows ex-

ponentially with n for the adopted signal model.

4.1. Determination of p(S0:n, y0:n)

To determine2 p(S0:n, y0:n), we rst observe3 that

p(S0:n, y0:n) =
∑
L∈L

∫
R+

∫
RL

p(S0:n, y0:n, L, h, σ2) dσ2 dh.

(15)
Under the model assumptions described in Sec. 2, the inte-
grand on the right-hand side (r.h.s) of (15) decomposes as

p(S0:n, y0:n, L, h, σ2) = p(y0:n|S0:n, L, h, σ2)

× p(S0:n)p(h|L, σ2)p(L)p(σ2) .
(16)

The rst term on the r.h.s of (16) is an (n + 1)-variate Gaus-
sian density with covariance matrix Iσ2. The distribution
p(S0:n), in turn, assumes the same value for all binary vec-
tor sequences that obey (3) and, therefore, is omitted in the
sequel. Consequently, we can rewrite (16) as

p(S0:n, y0:n, L, h, σ2) ∝
(
σ2

)−(n+L+1
2 +α+1)

× (2π)−(
n+L+1

2 ) (ελ)L

L! exp
{
− 1

2σ2 (2β +Qn)
}

,
(17)

where Qn = ‖yn − Snh‖2 + ε2‖h‖2 (18)

Sn = [Sn . . . S0]T (19)

yn = [yn . . . y0]T (20)

To integrate the channel parameter vector h, we must rewrite
Qn as a quadratic function of h

Qn = ‖h− h̃n‖2Σ−1
n
+Rn (21)

in which h̃n, Rn and Σn do not depend on h. After some
manipulations, these quantities can be determined as

Σn =
(
S

T

nSn + ILε2
)−1

(22)

h̃n = ΣnS
T

nyn (23)

Rn = yT
nyn − yT

nSnΣnS
T

nyn (24)

2For clarity, we drop in this section the superscript index (i).
3Similar derivations can be found in [4] and [7]. Both of them, however,

consider the model order L known and do not completely describe recursive
evaluation methods.

III  1274



Substituting (22)-(24) into (17), we get that

p(S0:n, y0:n, L, σ2) ∝
(
σ2

)−(n+L+1
2 +α+1)

× (2π)−(
n+L+1

2 ) (ελ)L

L! exp
{
− 1

2σ2 (2β +Rn)
}

×
∫

RL exp
(
− 1

2

∥∥∥h− h̃n

∥∥∥2

σ−2Σ−1
n

)
dh .

(25)

The above integral evaluates to
(
2πσ2

)L/2 |Σn|1/2, from which
we obtain

p(S0:n, y0:n, L, σ2) ∝

∝ Cn(L)
(
σ2

)−(n+1
2 +α+1) exp

{
− 1

σ2

(
β + Rn

2

)}

∝ Cn(L) Γ(αn) β−αn
n IG(σ2|αn;βn) ,

(26)

where αn = α+ (n+ 1)/2 (27)

βn = β +Rn/2 (28)

Cn(L) = (2π)−(
n+1

2 ) |Σn|
1
2 (ελ)L/L! (29)

Integrating out σ2 in (26) amounts to discarding the inverted-
gamma density, which nally leads to

p(S0:n, y0:n, L) ∝ |Σn,L|
1
2 (ελ)L

(βn,L)αnL!
, (30)

where the notation Σn,L, βn,L was introduced to stress the
dependence of these variables on the order L. Finally, p(S0:n,
y0:n) can be obtained by summing (30) for all L ∈ L.

4.2. Recursive Evaluation

To recursively evaluate (30), one needs to obtain recursive
expressions for |Σn,L| and Rn,L (needed to determine βn,L).
To this aim, observe that as a consequence of (19)-(20)

Rn,L = RY
n − (RSY

n,L)
TΣn,LRSY

n,L (31)

where
RY

n = RY
n−1 + |yn|2 (32)

RSY
n,L = RSY

n−1,L + Sn,Lyn (33)

From (22), one can easily verify that

Σ−1
n,L = Σ−1

n−1,L + Sn,LST
n,L , (34)

which after some manipulations [8] leads to

Σn,L = Σn−1,L −
Σn−1,LSn,LST

n,LΣn−1,L

1 + ST
n,LΣn−1,LSn,L

(35)

|Σn,L| = |Σn−1,L|
1

1 + ST
n,LΣn−1,LSn,L

(36)

As a consequence of (32)-(36), (31) can be evaluated at a
complexity O(P |L|L2), roughly the same of the method de-
scribed in [1] if the channel order is assumed known. Fi-
nally, observe that for the recursions (32)-(36) to be consis-
tent with previous assumptions, we must set |Σ−1,L| = εL,
Σ−1,L = ILε2, RSY

−1,L = 0 and RY
−1 = 0.

4.3. Data estimation

As each particle S
(i)
0:n uniquely de nes a corresponding bit se-

quence b
(i)
0:n (by differentially decoding s

(i)
−1:n), one can ver-

ify that the latter sequence is a sample of p(b0:n|y0:n), which
leads to an approximation of this distribution via (7). Smoothed
estimates [9] of bn can then be obtained as

P(bn−d = B|y0:n) ≈
∑P

i=1 w
(i)
n I

{
b
(i)
n−d,0:n = B

}
∑P

j=1 w
(j)
n

. (37)

where b
(i)
n−d,0:n stands for the (n − d)-th element of the se-

quence b
(i)
0:n (as available at time n) and B ∈ {0, 1}. The

resulting estimation algorithm is summarized in Table 1.

5. SIMULATION RESULTS

To evaluate the performance of the proposed blind equaliza-
tion method, we carried out numerical simulations evaluating
the BER (bit error rate) as a function of the SNR (signal-to-
noise ratio), de ned as

SNR � 10 log10 ‖h‖2/σ2.

Simulations included 300 independent realizations, each con-
sisting of a block of 250 i.i.d binary symbols. BER estimation
was made after discarding the rst 100 symbols to allow for
algorithm convergence.

In the following simulations, we employed the L = 3
channel h = [0.41 − 0.82 0.41]T and assumed a non-infor-
mative prior density for the noise variance (α = β = 0). The
channel variance and order hyperparameters were empirically
set to ε = 1 and λ = 0.001. The lter employs P = 300 par-
ticles and a smoothing lag of d = 5 samples, and the resam-
pling threshold was set to 90% of the effective sample size.

Figure 1 shows the results obtained for the algorithm in
Table 1, with known (circle) and unknown channel order (squa-
re), with L = {2, 3, 4}. In the same gure, we display the
performance of the algorithm described in [1] (known channel
order), operating with correct (triangles down) and underesti-
mated variance (triangles up) σ′2 = 0.5σ2. For comparison,
we also depict (dashed line) the performance of the optimal
MAP detector (BCJR) operating with exact channel and noise
variance parameters on blocks of 300 samples.

As one might verify, when the channel order is known,
the proposed method perform similarly to that described in
[1], much outperforming the latter when the employed noise
variance value is incorrect. When the channel order is un-
known, however, the proposed method suffers a performance
penalty. This result qualitatively differs from those obtained
by the method described in [2], which however adopts differ-
ent priors for the channel parameters and assumes the noise
variance known.
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(Initialization)
For L ∈ L

For i = 1, ..., P
Set R

Y (i)
−1,L = 0, R

SY (i)
−1,L = 0,Σ(i)

−1,L = Iε2,

and |Σ(i)
−1,L| = ε2L.

(Algorithm)
For n ≥ 0
1. For i = 0, ..., P − 1

a) For L ∈ L
For s

(i)
n = {−1, 1}

a1) Update R
Y (i)
n,L , R

SY (i)
n,L , Σ(i)

n,L and |Σ(i)
n,L|

via (32)-(36).

a2) Determine α
(i)
n,L and β

(i)
n,L via (27)-(28).

b) Determine p(S(i)
0:n−1, s

(i)
n = ±1, y0:n) by

summing (30) for all L ∈ L
c) Determine the optimal importance function via (14),

draw S
(i)
n and select the corresponding values of

R
Y (i)
n,L , R

SY (i)
n,L , Σ(i)

n,L and |Σ(i)
n,L|.

d) Determine b
(i)
n by differentially decoding s

(i)
n−1:n.

e) Update the weights w
(i)
n via (13).

2. Normalize the weights.
3. Estimate bn−d via (37).
4. Estimate the effective sample size

Neff =
(
P

∑P
i=1 |w

(i)
n |2

)−1

5. If Neff is lesser than an arbitrary threshold,
resample [6] the particles.

Table 1. Proposed Algorithm

6. CONCLUSIONS

We proposed in this work a new particle ltering algorithm for
blind equalization of unknown order communication channels
subject to unknown variance additive noise. Via numerical
simulations, we veri ed that the proposed method exhibits
a near optimal performance for known order channels even
in the absence of noise variance prior information, constitut-
ing therefore a more robust alternative to previous methods
(e.g. [1]) that require exact knowledge of this quantity, with-
out demanding increased computation effort.
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