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ABSTRACT

In this paper we introduce a new nonlinear detector to improve the
performance of spread spectrum receiver in the presence of narrow-
band interference. The new detector is blind in the sense that no
training data is required. In our scheme we use maximum like-
lihood (ML) detection rule in conjunction with maximum entropy
method (MEM) for probability density function (PDF) estimation of
the observation noise. We use MEM with a new approach based
on fractional moments instead of integer moments. The estimated
PDF based on fractional moments is quite close to the true PDF. The
results indicate that the new nonlinear detector outperforms conven-
tional matched lter, and well known locally optimal (LO) detector.

Index Terms— Maximum entropy method, maximum likeli-
hood detection

1. INTRODUCTION

The idea of overlaying spread spectrum systems on narrowband net-
works offers a solution to obtain greater bandwidth ef ciencies and
better use of the overcrowded frequency spectrum [1, 2, 3, 4]. It is
well known that direct sequence spread spectrum (DSSS) signal has
an inherent immunity against narrowband signals. Even so, it has
been shown that the capability of the spread spectrum system in re-
jecting narrowband interference can be signi cantly improved if an
appropriate narrowband interference suppressing lter is employed
in the receiver [1, 2, 3, 4, 5, 6]. Previously, the observation noise
PDF in the spread spectrum receiver is obtained [3], which is a non-
Gaussian PDF, hence, linear lters can not be optimal in this case.
The approximate conditional mean (ACM) lter [1, 3] is used to sup-
press the effect of the narrowband signal. This lter is a nonlinear
lter which is an approximation of optimal lter in non-Gaussian

observation noise. [4, 5] developed some simpler nonlinear lters
which have performance comparable to the ACM lter. The main
drawback of these lters, ACM lter and one in [2] is their slow con-
vergence rate using adaptive algorithms for implementation. These
algorithms require long training sequences to work properly; there-
fore, they suffer a loss in the bandwidth ef ciency. Some new meth-
ods such as one in [6] are proposed to improve the convergence rate
of these methods. In this paper we propose a new nonlinear detec-
tor for the spread spectrum signal that does not require training data.
When observation noise is non-Gaussian the LO detector has good
performance in the weak signal case but its performance is poor in
high signal to noise ratio (SNR) circumstances [7]. The proposed
detector has better performance than LO detector. In our scheme we
use two optimal methods, the rst one is MEM which is used for
PDF estimation of the observation noise. MEM is reasonable be-
cause the most likely PDF is one that includes more disorder and
makes fewest assumptions about data which is more smoother and

probable [8]. We use MEM method based on fractional moments in-
stead of more familiar integer moments. The integer moments based
method is developed for our problem to compare results with frac-
tional case. The approximate density obtained resorting to MEM
based on a few fractional moments is a more accurate estimate of
a PDF because fractional moments can be expressed explicitly in
terms of the in nite sequence of the integer moments [9, 10]. The
second method is ML, this provides the test statistic for optimum
Bayes’ detection. This paper is organized as follows. In section 2,
the problem formulation is presented. In section 3, PDF estimation
based on integer and fractional moments is achieved. The proposed
detector is derived in section 4. Section 5 presents the simulation
results, and section 6 provides some concluding remarks.

2. PROBLEM FORMULATION

We assume the following model for the samples of the received
spread spectrum signal in the presence of narrowband interference
[1, 3, 4, 5, 6]

y[k] = s[k] + i[k] + ν[k], (1)

where s[k], i[k], and ν[k] are samples of the spread spectrum, nar-
rowband signal, and white Gaussian noise respectively. We assume
s[k] is a sequence of independently identically distributed (IID) ran-
dom variables, [3]. Previously three basic models have been used for
the narrowband signal; tonal signal, narrowband autoregressive pro-
cess and digital narrowband signal [1]. We use digital narrowband
signal; a more realistic assumption, [2]. The sequences s[k], ν[k]
and i[k] are assumed to be mutually independent [3]. In detecting
the spread spectrum signal the observation noise is the sum of the
narrowband interference and white Gaussian noise

w[k] = i[k] + ν[k]. (2)

Sincew[k] is the sum of two independent random variables, the PDF
of w[k] is the convolution of the PDF’s of i[k] and ν[k]. ν[k] is a
Gaussian random variable and i[k] is a random variable taking on
values +I and −I with equal probability. So the PDF of w[k] is

fw(w[k]) =
1

2
[Nσ2(w[k]− I) +Nσ2(w[k] + I)] , (3)

where Nσ2(x) is de ned as exp(−x2/2σ2)/
√

2πσ2 and σ2 is the
variance of each Gaussian shape component. Thus the observation
noise is a non-Gaussian noise which can be unimodal or bimodal
based on the values for σ2 and I . The degree of non-Gaussianity of
a symmetric PDF is measured by its ‘Kurtosis Excess’ which is the
Kurtosis relative to Gaussian with following de nition [7]

γ =
E(w4[k])

E2(w2[k])
− 3,
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where E(·) denotes the expectation operation. For the observation
noise in (3), we have

γ =
−2I4

(σ2 + I2)2
.

Since this parameter is always negative, the PDF for the observation
noise has tails that fall off faster than the Gaussian PDF [7]. Hence,
the underlying binary spread spectrum signal detection is formulated
in the following hypothesis testing problem

H1 : y[k] = A+ w[k], k = 1, 2, · · · , N (4)

H0 : y[k] = −A+ w[k], k = 1, 2, · · · , N
where y[k] and w[k] represent the samples of the received signal
and observation non-Gaussian noise respectively. A represents the
level of the binary spread spectrum signal and N is the number of
chips per bit in the spread spectrum signal. When the observation
noise is non-Gaussian there are always nonlinear detectors with bet-
ter performance with respect to conventional optimum linear detec-
tors [1, 3, 4, 5, 6, 7]. In the following sections we propose a new
nonlinear detector for spread spectrum signal that requires no train-
ing data and has better performance than the matched lter and LO
nonlinear detector.

3. MAXIMUM ENTROPY METHOD FOR PDF
ESTIMATION

We assume the following moments of an unknown PDF, f(·), on the
support set S are known; or estimated

μαi = E(xαi) =

∫
S

xαif(x) dx, i = 0, · · · ,M (5)

where α0 = 0 and other αi’s can be integer (αi = i) or fractional
numbers. The traditional MEM is based on integer moments but
we use this method based on both integer and the best set of frac-
tional moments. Moments are attractive because their computation
is algorithmically simple and uniquely de ned for any random vari-
able that meets the Carleman condition [11], and, since moments are
global quantities, all available information is used making our inte-
ger or fractional moment-based methods less vulnerable to losses or
changes of details than methods that use other criteria. But the most
relevant information carried by the sequence of integer moments can
be compacted in a few fractional moments [9, 10]. Hence, the esti-
mated PDF with the appropriate fractional moments is a better ap-
proximation of the true PDF with respect to the same number of inte-
ger moments. Now, considering the moment constraints we estimate
f(·). Clearly, this problem does not have a unique solution because
there are many PDF’s satisfying above constraints. Invoking maxi-
mum entropy principle we can nd a unique solution. Maximizing
the entropy functionalH[f ] = − ∫

S
f(x) ln f(x)dx subject to men-

tioned moment constraints yields the following functional form for
PDF [8]

fM (x) = exp

(
M∑

i=0

−λix
αi

)
, (6)

where λi’s are the Lagrangian multipliers that must be determined
so that fM (·) satis es the moment constraints in (5). The entropy of
fM (·) is as follows

H[fM ] = −
∫

S

fM (x) ln fM (x) dx =

M∑
i=0

λiμαi . (7)

Under the hypothesis of equivalent integer or fractional moments it
is shown that H(fM ) converges to H(f) when M → ∞ [9, 10].
Equivalent moments condition is also used to obtain the following
equation for divergence measure of the two PDF’s [9, 10],∫

S

f(x) ln
f(x)

fM (x)
dx = H[fM ]−H[f ].

Hence divergence measure converges to zero by increasing M . A
bound on the absolute difference between two PDF’s is introduced
in [9, 10]∫

S

|fM (x)− f(x)| ≤
√

2(H(fM )−H(f)). (8)

Therefore convergence in entropy is tantamount to convergence in
distribution or PDF. In the other words, the absolute error obtained
replacing f(x) with fM (x) may be rendered arbitrarily small by in-
creasingM . As an appraisal of the PDF approximation we compute
the relative error de ned as

RE =
|True PDF−Approximated PDF|

True PDF
(9)

3.1. Integer moments

Substituting (6) in (5) with S = (−∞,∞) and using integration
by parts for calculating this integral we reach the following set of
equations for λi’s

(j + 1)μj =

M∑
i=1

iλiμi+j , j = 1, 2, · · · ,M (10)

We can express the above simultaneous equations in a matrix-vector
form

Az = b (11)

where A is a M × M matrix with elements ai,j = μi+j−1, b
and z are vectors de ned as b=[2μ1, 3μ2, · · · , (M + 1)μM ]T and
z = [λ1, 2λ2, · · · , MλM ]T . The λi’s for i �= 0 are obtained
by solving (11) and λ0 can be obtained from PDF condition μ0 =
1. The characteristic function of the underlying noise is Φ(jω) =
cos(Iω) exp(−σ2ω2/2), it is used to obtain the required moments
from μi = E[xi] = (−j)iψ(i)(0). This method is used for estimat-
ing the observation noise PDF in (3) for I = 3 and σ2 = 1 and the
following PDF is estimated, depicted in Fig. 1,

fM (x) = exp(−2.4287 + 0.0959x2 − 0.00597x4).

Because the observation noise PDF in (3) is even symmetric, esti-
mated PDF only includes terms with even powers in the exponent.
The relative error also is depicted in Fig. 2. In Table. 1, the entropy
difference between the estimated and true PDF is shown.

3.2. Fractional moments

For the fractional moments case the support set is assumed S =
[0,∞), as in [9]. Since, the observation noise PDF is even sym-
metric and the suf cient information about PDF is available in the
positive values, we initially estimate the PDF for positive values and
then we will use | · | to obtain the PDF for all values. By investigat-
ing equation (8), we can deduce there is always an optimal choice of
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fractional moments and lagrangian multipliers in the sense that it ac-
celerates the convergence ofH(fM ) toH(f) and it can be obtained
via following constrained optimization [9, 10]

{(αi, λi)}M
i=1 = arg min

αi,λi

H[fM ] (12)

with fractional moment constraints in (5). This is because fM (·) is
the PDF with maximum entropy among distributions with the same
moments. Hence H(fM ) > H(f) for ∀αi, λi. Therefore, the op-
timal set of parameters are obtained with above optimization which
corresponds to the minimum distance between entropies and conse-
quently PDF’s due to (8). The above constraint optimization prob-
lem doesn’t have an analytic solution and the solution must be ob-
tained numerically. From (5) with i = 0, λ0 is obtained as

λ0 = ln

[
1

μ0

∫ ∞

0

exp

(
M∑

i=1

−λiw
αi

)
dx

]
. (13)

Using (7) and (13), the above optimization corresponds to the fol-
lowing one [9, 10]

min
λi,αi

{
ln

∫ ∞

0

1

μ0
exp

(
M∑

i=1

−λiw
αi

)
dw +

M∑
i=1

λiE(wαi)

}
,

where, E(wαi)’s are fractional moment constraints which must be
used from (5) in the above optimization. This optimization is achieved
for the case in the previous section and the following estimated PDF
is obtained

fM (x) = exp(−5.4693 + 2.8656|x|1.2305 − 0.9177|x|1.879).

In Fig. 1 and Fig. 2 the above estimated PDF is compared with the
method based on integer moments. We notice that the PDF obtained
based on fractional moments coincides with the true PDF and this
method yields much better approximation of the true PDF. Hence,
the information content of two optimal fractional moments is more
than four integer moments for the underlying case. In Table 1 the
entropy differences between the estimated PDF and true PDF for
integer and fractional moments are shown. This table con rms the
faster convergence of H(fM ) to H(f) for the fractional moments
case.

4. NEW SPREAD SPECTRUM DETECTOR FOR OVERLAY
SYSTEMS

In the previous section the estimated PDF based on integer and opti-
mized fractional moments are obtained. We use the estimated PDF’s
in the log-likelihood ratio (LLR), to obtain the optimum Bayes’ de-
tector. Since the noise samples are IID variates, the test statistics for
LLR is

T (y) =
N∑

k=1

ln
f(y(k)|H1)

f(y(k)|H0)
,

where y shows the received vector of length N . As we see in the
previous section the estimated PDF with fractional moments method
has | · | in its structure. Hence, we use equation (6) with | · | for
estimated PDF. Considering (4) and this model for noise samples,
the log-likelihood test is obtained as

T (y) =

N∑
k=1

M∑
i=1

−λi (|y[k]−A|αi − |y[k] +A|αi)
H1
>
<
H0

0.

Hence, the new detector includes an accumulator, threshold com-
parator and the following nonlinearity

gMEM,FM(x) =
M∑

i=1

−λi (|x−A|αi − |x+A|αi) . (14)

For integer moments, after some mathematical simpli cation, we ob-
serve that the even power terms in the log-likelihood ratio vanish and
the nonlinearity is a polynomial consisting of odd power terms

gMEM,IM(x) =
∑M−1

i=1,i�=2� aix
i, (15)

where ai’s are real numbers which can be obtained based on the
values of A and λi’s. The nonlinearities for integer and fractional
cases are shown in Fig. 3 for A = σ2 = 1 and I = 3.

5. SIMULATION RESULTS

In this section we examine the performance of the proposed detec-
tor. The performance measure is the probability of error obtained
via Monte Carlo simulation. We compare the new proposed detec-
tor with conventional matched lter, the detector based on integer
moments and the well known LO detector. The nonlinearity in LO
detector is gLO(x) = −f ′w(x)/fw(x) [7]. For the observation noise
PDF in the underlying spread spectrum problem, it is easy to show
that LO test is

T (y) =

N∑
k=1

(
y(k)

σ2
− I

σ2
tanh

(
I
y(k)

σ2

))
H1
>
<
H0

0.

The nonlinearity in the above test statistics which is shown in the
Fig. 3, is similar to the one in ACM lter [1, 3]. Simulations are
achieved for σ2 = 1, I = 3 and number of chips per bit N = 17.
The results are depicted in Fig. 4. We note that the proposed detector
based on fractional moments outperforms the conventional matched
lter and LO detector and reach to the vicinity of lower bound. The

lower bound is for the case where there is no interference, i.e. I = 0.
In high SNR the performance of LO detector is worse than matched
lter; due to the Taylor series approximation about zero which is

used in deriving LO detector, that is valid only in weak signal con-
dition [7].

6. CONCLUSION

In this paper we introduce a new blind nonlinear detector to im-
prove the performance of spread spectrum receiver in the presence
of narrowband interference. In our scheme we use ML detection
rule coupled with MEM and a new approach based on fractional
moments which yields a quite close approximation for the PDF of
non-Gaussian observation noise. Simulation results indicate that our
nonlinear detector outperforms conventional linear and LO nonlin-
ear detector.

M integer/fractional moments H(fM )−H(f)
Four integer moments 0.20935
Two fractional moments 0.07095

Table 1. Entropy differences for integer and fractional moments.
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