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ABSTRACT

We introduce adaptive linear lters based on the adaptive projected
subgradient method that are suitable for online implementation of
multiple access interference (MAI) suppression in OSTBC-MIMO
systems. The proposed adaptive lters track the optimal solution of
a new cost function that is robust against channel state information
(CSI) mismatch. The adaptive update algorithm is based on projec-
tions onto closed convex sets that contain the optimal solution with
high probability. The main features of the adaptive lters are that
no matrix inversion of a sample covariance matrix is required and
that a low-complexity recursive implementation is possible. Conver-
gence analysis and simulation results show the effectiveness of the
proposed schemes.

Index Terms— Adaptive lters, Interference suppression, Mul-
tiuser channels, MIMO systems.

1. INTRODUCTION

Orthogonal space-time block codes (OSTBCs) are ef cient codes
to implement low-complexity receivers enjoying full diversity [1].
When only one user is present in an additive white Gaussian noise
(AWGN) channel, maximum likelihood (ML) detection can be real-
ized with a simple linear lter that can be interpreted as a space-time
matched lter (STMF) [2]. However, if multiple users access the
channel at the same time, a STMF, which is matched to one speci c
user, does not take into account the structure of this multiple access
interference (MAI), which cannot be modeled as white noise and
severely degrades the system performance. Unfortunately, ML de-
tection has high complexity and requires knowledge of the channels
of all interfering users [2, Ch. 11]. Therefore, suboptimal receivers
that exploit the structure of MAI have been proposed as an alterna-
tive to the conventional STMF and ML receivers [1]–[3] .

Blind linear receivers that reduceMAI and optionally completely
eliminate self-interference without excessively amplifying noise have
been introduced in [1]. These receivers are based on the inversion of
a sample covariance matrix of a block of received symbols, hence
they can be hard to be implemented for online adaptation with low
computational complexity. (The size of the matrix to be inverted
increases if either the number of times that the channel is used to
transmit one OSTBC or the number of receiver antennas increases.)
Moreover, in practical situations, an ad-hoc choice of a diagonal
loading factor or a certain worst case optimization [3], which fur-
ther increases the computational complexity, is necessary to provide
robustness against imperfect channel state information (CSI).

We introduce a new cost function of which the solution is a lin-
ear lter that is robust against CSI mismatch and reduces to the one
proposed in [1] when CSI is perfect. Instead of using standard adap-
tive algorithms that try to minimize directly our proposed robust cost
function, we use the adaptive projected subgradient method to derive
a recursion that minimizes a series of cost functions. The minimum
of this series is achieved in the intersection of closed convex sets that
contain the optimal solution of our robust cost function with high
probability. The resulting algorithms are suitable for online adapta-
tion, provide good steady-state performance and convergence speed,
and give rise to an ef cient recursive implementation that does not
require any matrix inversion and converges in the mean sense to the
desired lter. Simulation results are provided to illustrate the effec-

tiveness of our algorithms. Due to the space limitation, the proofs of
this paper are omitted.

2. SYSTEMMODEL

Consider a MIMO system with P users using the same OSTBC
(these assumptions can be relaxed to users that use different linear
codes) and N transmitter antennas. The code rate is R = K/T ,
whereK is the number of symbols transmitted at T time instants by
each user. The receiver hasM antennas, and user one (p = 1) is the
desired user, where p is the user number. The received signal Y , at
time i ∈ N

∗, can be expressed as in [1]

Y [i] =

P
X

p=1

Xp(sp[i])Hp + V [i] ∈ C
T×M , (1)

whereHp ∈ C
N×M is the channel matrix between the pth transmit-

ter and the receiver, sp[i] ∈ C
K is the vector of K symbols trans-

mitted by the pth user, and V [i] ∈ C
T×M is the noise matrix. The

xth row and yth column ofHp is the complex channel gain between
the xth antenna of the pth user and the yth antenna of the receiver.
The matrixXp(sp[i]) is the OSTBC of the pth user associated with
the vector sp[i] and is formed according to

Xp(sp[i]) =

K
X

k=1

[CkRe (sp,k[i]) + DkIm (sp,k[i])] ∈ C
T×N ,

where {Ck, Dk} are code matrices of dimension T ×N [2, Ch. 7]
and sp[i] =: [sp,1[i] sp,2[i] . . . sp,K [i]]T .

De ning the ”underline” operator for any given matrixM ,M =
ˆ

vec[Re (M )]T vec[Im (M )]T
˜T , where vec is the column-stacking

operator, (1) can be rewritten as in [2]

Y [i] =
P
X

p=1

Apsp[i] + V [i] ∈ R
2MT , (2)

where
Ap = [C1Hp · · · CKHp D1Hp · · · DKHp]

= [ap,1 ap,2 · · · ap,2K ] ∈ R
2MT×2K ,

and sp[i] =: [bp,1[i] . . . bp,2K [i]]T ∈ R
2K . (Note that bp,a[i] =

Re (sp,a[i]) for 1 ≤ a ≤ K and bp,a[i] = Im (sp,a−K [i]) for
K +1 ≤ a ≤ 2K.) The matrixAp satis esAT

p Ap = ‖Hp‖2F I2K

[2], where I2K is the identity matrix of dimension 2K × 2K. The
following assumptions are used.

Assumption 1 The data symbols sp,k[i], 1 ≤ p ≤ P, 1 ≤ k ≤ K,
are chosen from a quadrature phase shift keying (QPSK) constella-
tion and belong to the set {−1−1j,−1+1j, 1−1j, 1+1j}, where
j =

√−1. Additionally, these symbols are modeled as independent,
zero-mean random variables with equal probability.
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Assumption 2 The data symbols from different users and noise are
mutually uncorrelated. Additionally, the elements of the noise ma-
trix V [i] are independent, circularly symmetric, complex zero-mean
Gaussian random variables with variance σ2

V .

Assumption 3 The conditionMT > PK is satis ed.

3. MULTIACCESSMIMO LINEAR RECEIVER

In communication systems, in order to reduce BER, low-complexity
receivers usually apply a linear lter W , which is the solution of
a fairly simple optimization problem, to the received signal Y [i].
Under Assumption 1, the transmitted symbols are usually estimated
by esp[i] = sgn(W T Y [i]), where sgn is the element-wise signum
function and esp[i] is the estimate of sp[i]. In [1], the following lter
has been proposed to reduce MAI:W �

opt = [w�
opt,1 . . . w�

opt,2K ],
where

w
�
opt,k ∈ arg min

wk∈C�

k

w
T
k Rwk, C�

k := {w ∈ R
2MT |AT

1 w = ek},
(3)

ek is the vector of zeros, except for the kth entry, which is one,
and R = E{Y [i] Y [i]T }. The idea behind the above lter is
to minimize the lter output energy under the constraint C�

k (k =
1, . . . , 2K), which eliminates self-interference and keeps the desired
user’s power. Unless stated explicitly, we assume that R has full
rank. In such a case, w�

opt,k is unique and is given by

w
�
opt,k = R

−1
A1(A

T
1 R

−1
A1)

−1
ek. (4)

Unfortunately, the performance of receivers based on (4) with A1

andR replaced by their estimates can be very sensitive to estimation
errors [1].

The transmitted symbols belong to a small nite set in communi-
cation systems, so it is reasonable to use estimates of these symbols
to improve the performance against MAI and imperfect CSI. Assum-
ing for the moment that the estimates are perfect (this assumption
will be dropped later), to accommodate this additional information,
we propose a lter that minimizes the mean-square error between
the lter output and the desired output scaled by a constant under a
practical constraint Ck. More precisely, the kth column of the pro-
posed lterW opt(α) := [wopt,1(α1) . . . wopt,2K(α2K)] is given
by

wopt,k(αk) ∈ arg min
wk∈Ck

E{|wT
k Y [i]− αkb1,k[i]|2} (5)

Ck := {w ∈ R
2MT |eAT

1 wk = ek},

where eA1 is a possibly erroneous estimate of A1,
α = [α1 . . . α2K ]T , and αk ≥ 0 is a properly chosen constant. The
relation between the estimate of the channelfH1 and eA1 is given by
eA1 = [C1

fH1 · · · CK
fH1 D1

fH1 · · · DK
fH1]. A reasonable

choice for αk is addressed in Sect. 4. A closed form expression for
the lter in (5) is given by the following proposition.

Proposition 1 If R has full rank, the lter in (5) is uniquely given
by

wopt,k(αk) = αkR
−1

a1,k − αkQ eA
T

1 R
−1

a1,k + Qek, (6)

where Q = R−1
eA1(eA

T

1 R−1
eA1)

−1. In particular, if A1 = eA1,
wopt,k(αk) is reduced to the lter in (3), i.e., wopt,k(α) = w�

opt,k

∀αk ≥ 0 (the solution does not depend on αk). 1

1Whenever we assume perfect CSI, we de ne wopt,k := wopt,k(αk)
for notational simplicity.

4. PROPOSED ALGORITHM

Instead of directly minimizing a cost function related to (5), our
adaptive lters suppress the following function ofwk under the con-
straintwk ∈ Ck at time i,

Θ[i](wk) :=

8

>

<

>

:

Pq[i]−1
j=0

ω[i, j]

L[i]
‖wk[i]− PKk[i−j])(wk[i])‖·

·‖wk − PKk[i−j](wk)‖, if L[i] �= 0
0, otherwise,

(7)

where Kk[i − j] (j = 0, . . . , q[i] − 1) are closed convex sets that
contain the optimal lter wopt,k(αk) with high probability, ω[i, j]

is the weighting factor of the set Kk[i− j] (
Pq[i]−1

j=0 ω[i, j] = 1 and
ω[i, j] > 0), L[i] =

Pq[i]−1
j=0 ω[i, j]‖wk[i] − PKk [i−j](wk[i])‖,

and PKk[i] is the projection onto Kk[i]. It is clear that Θ[i] achieves
0 when the lter wk belongs to the intersection

Tq[i]−1
j=0 Kk[i − j].

Therefore, if wopt,k(αk) ∈ Tq[i]−1
j=0 Kk[i], and this intersection is

fairly small, a lter that suppresses Θ[i] is expected to be a good
approximation of wopt,k(αk).

As a low-complexity algorithm, we use the adaptive projected
subgradient method, which minimizes asymptotically over Ck the
sequence of non-negative functions Θ[i] (i = 1, 2, . . .) in (7). Sub-
stitution of (7) into [4, Eq. (11)] with C := Ck yields the following
algorithm.

Algorithm 1

wk[i + 1]

= PCk

0

@wk[i] + λ[i]

0

@

q[i]−1
X

j=0

ω[i, j]PKk [i−j](wk[i]) −wk[i]

1

A

1

A ,

where λ[i] ∈
“

0, 2M[i](wk[i])
”

is the step size,
Pq[i]−1

j=0 ω[i, j] =

1, ω[i, j] > 0, PCk
(w) = P w + eA1(eA

T

1
eA1)

−1ek, PKk[i] is the

projection onto Kk[i], P = I − eA1
eA

T

1 /‖fH1‖2F , and

M[i](w) =

8

>

>

>

<

>

>

>

:

Pq[i]−1
j=0 ω[i, j] ‖PKk [i−j](w)−w‖2

‖Pq[i]−1
j=0 ω[i, j]PKk [i−j](w)−w‖2

,

if w /∈ Tq[i]−1
j=0 Kk[i− j]

1, otherwise.

A natural choice for the setKk[i] can be easily obtained by dropping
the expectation operator in (5),

Kk[i] := {wk ∈ R
2MT | |wT

k Y [i]− αkb1,k[i]|2 ≤ ρ2}, (8)
k = 1, . . . , 2K,

where ρ > 0 increases the probability that wopt,k(αk) ∈ Kk[i]
when noise is present. The set Kk[i] is a closed hyperslab, and
thus the projection onto this set is very simple [5]. If αk �= 0 is
used, we have to replace b1,k[i] by its tentative estimate eb1,k[i] :=
sgn(wk[i]T Y [i]) because b1,k[i] is not usually available. Indeed,
we nd through numerical simulations in Sect. 5 that the replace-
ment is practically effective and does not degrade severely the steady-
state performance as compared to the case when training data are
available. If the estimated channel matrix fH1 and the true chan-
nel matrix H1 are suf ciently close to each other, the set Ck pro-
vides robustness against symbol estimation errors. The in uence
of the parameters αk and ρ on the set-membership probability of
wopt,k(αk) ∈ Kk[i] is given by Proposition 2.
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Proposition 2 On the set-membership probability of wk (∈ Ck) in
Kk[i], the following holds

(a) P{|wT
k Y [i] − αkb1,k[i]|2 ≤ ρ2} ≥ Q[i](wk, αk), where

Q[i](wk, αk) := 1−E{|wT
k Y [i]− αkb1,k[i]|2}/ρ2, (∀wk ∈

Ck,∀αk ≥ 0).

(b) Among all lterswk in Ck,wopt,k(αk) maximizes the lower
bound Q[i](wk, αk) of the set-membership probability, i.e.,
Q[i](wopt,k(αk), αk) ≥ Q[i](wk, αk).

(c) If CSI is perfect, although the optimal solution does not de-
pend on αk [i.e, wopt,k(αk) = wopt,k, ∀αk ≥ 0 (see Sect.
3) ], the lower bound of the set-membership probability is
maximized with αk = 1 and wk = wopt,k, i.e.,
Q[i](wopt,k, 1) ≥ Q[i](wk, αk) (∀wk ∈ Ck, ∀αk ≥ 0).

4.1. Recursive implementation

If a large number of sets are desired, an ef cient recursive algorithm
can be devised from Algorithm 1 by proper selection of the parame-
ters. The recursion in Algorithm 1 can be simpli ed as follows if the
weights satisfy a geometric series with larger weights given to more
recent data.

Algorithm 2 For ρ = 0, λ[i] = μ ∈ (0, 2), q[i] = i, ω[i, j] =

γj/
Pi−1

m=0 γm, j = 0, . . . , q[i]− 1, where 0 ≤ γ < 1 is the forget-
ting factor, Algorithm 1 reduces to

wk[i + 1] =

„

I − μP
F [i]

S[i]

«

wk[i] + μαkP
gk[i]

S[i]
,

where S[i] = 1+γS[i−1], F [i] = γF [i−1]+
Y [i]Y [i]T

‖Y [i]‖2 , gk[i] =

γgk[i−1]+
Y [i]b1,k [i]T

‖Y [i]‖2 , S[1] = 1, F [1] = Y [1]Y [1]T /‖Y [1]‖2,
and gk[1] = Y [1]b1,k[1]/‖Y [1]‖2 .

Unlike RLS-based algorithms, Algorithm 2 does not require a matrix
inversion and can achieve good steady-state performance even with
small forgetting factor values.

4.2. Convergence of the algorithm

We assume that the lter provides reliable estimates of b1,k[i] if
αk �= 0 although this assumption does not always hold in our simu-
lations. We also use the following common assumptions in the anal-
ysis of adaptive lters.
Assumption 4

Pq[i]−1
j=0 ω[i, j]Y [i− j]Y [i− j]T /‖Y [i− j]‖2

and wk[i] are mutually independent ∀i.
This assumption only holds exactly for q[i] = 1. However, it is a
good approximation for large q[i] because
Pq[i]−1

j=0 ω[i, j]Y [i− j]Y [i− j]T /‖Y [i− j]‖2 can be approximated
by its mean value, which is a constant, and thus independent of
wk[i], ∀i (see, for example, [6, Sect. 6.9.2]).

Assumption 5
E

˘

Y [i]Y [i]T /‖Y [i]‖2¯ ≈ E{Y [i]Y [i]T }/E{‖Y [i]‖2} and
E

˘

b1,k[i]Y [i]/‖Y [i]‖2¯ ≈ E{b1,k[i]Y [i]}/E{‖Y [i]‖2}.
Closed form expressions for E{Y [i]Y [i]T /‖Y [i]‖2} and
E{b1,kY [i]/‖Y [i]‖2} are dif cult to obtain, but similar approxi-
mations have been widely used in current literature [6, p. 301].

Proposition 3 On the convergence of the proposed method, the fol-
lowing holds

(a) In the noiseless case with perfect CSI, if αk = 1 and
TP

p=2 null(AT
p )

T

Ck �= ∅, Algorithms 1 and 2 satisfy
limi→∞Θ[i](wk[i]) = 0, regardless of the possible choices
of other parameters2.

(b) (Unbiasedness) When noise is present, under Assumptions 4
and 5, Algorithm 2 satis es lim

i→∞
E{W [i]} = W opt(α),

whereα = [α1 . . . α2K ]T , andαk = α ≥ 0, k = 1, . . . , 2K.

5. SIMULATION RESULTS

We assume a system with four users (P = 4) and a receiver with
M = 8 antennas. All users use the 1/2 rate OSTBC [1] withK = 4,
T = 8, N = 3, and employ QPSK modulation (see Assump-
tion 1). Ensemble average curves are obtained by averaging the
mismatch ‖W [i − 1]T Y [i] − s1[i]‖2 over 500 realizations. Since
the receivers in [1] are batch receivers 3, for fairness, nal sym-
bol detection for our receivers is made using W [i = L], where
L is the number of blocks considered at each realization. Sym-
bol error rate (SER) curves are obtained by considering L = 500
blocks of transmitted symbols (in 100 realizations). The signal-to-
noise ratio (SNR) for each element of b1,k[i] is given by SNR =
E{tr `XXH

´}E{‖H1‖2F }/(Nσ2
V K) [2]. Initially, the elements

of the channel matrices are circularly symmetric, complex zero-mean
Gaussian random variables with unit variance, and then the channels
are normalized to yield ‖Hp‖2F = 1, ∀p.

We consider three different versions of Algorithm 2 (Proposed-
a, Proposed-b, and Proposed-c), the parameters of which are chosen
as follows: μ = 1 and αk = 1 (∀k). They differ in the choice of
γ, which is set to 0, 0.9, and 0.99, for Proposed-a, Proposed-b, and
Proposed-c, respectively. The true transmitted symbols are replaced
by their rough estimates. We compare our algorithms with the opti-
mal lterW �

opt, STMF (W [i] = AT
1 /‖H1‖2F ), an “adaptive” ver-

sion of the diagonally loaded minimum variance (DLMV) receiver
of [1] [W [i] = ( eR[i]+βI)−1A1(A

T
1 (eR[i]+βI)−1A1)

−1, where
eR[i] := 1/i

Pi

j=1 Y [j]Y [j]T and β = 5σ2
V ], and the direct matrix

inversion (DMI) detector, which is essentially the DLMV receiver
with a small, xed diagonal loading factor (β = 10−6). These
“adaptive” versions are used to show the tracking characteristics of
the receivers. The DMI algorithm is actually tracking our proposed
optimal linear lter with αk = 0 (∀k)4.

Figures 1 and 2 show the performance of the algorithms when
CSI is perfect at the receiver. As γ increases, the steady-state perfor-
mance improves due to the increased memory of the algorithm, and
smaller mismatch results in lower SER.

In Fig. 3 we consider imperfect CSI, i.e., fH1 = H1 + E,
where the elements of E are complex, zero-mean Gaussian random
variables with unit variance. Then the matrix E is normalized so
that the mismatch ‖E‖2F /‖H1‖2F is set to 0.1 in every realization.
The proposed adaptive algorithms outperform the DLMV and DMI
algorithms in this scenario. The poor performance of the DLMV
is due to the nite sample effect of the sample covariance matrix.
The DLMV algorithm provides robustness by adjusting the diagonal
loading factor, whereas our algorithms provide robustness by using
rough estimates of the desired user’s symbols.

In order to show good convergence properties of the DLMV al-
gorithm, in Fig. 4 we increase the interference level (‖Hp‖F =
10‖H1‖F , p �= 1). Other parameters are the same as in Fig. 1. We
see that the convergence properties of the DLMV algorithm greatly
improve in highly interfered channels. Proposed-c is slower than
Proposed-b and Proposed-a because the symbol estimates at the be-
ginning of the simulation are not reliable and the memory of the

2This property holds without any approximation and even when R does
not have full rank.

3The receivers of [1] rst receive all symbol blocks, estimate the matrix
R, calculate the approximate optimal lter with the available information
(estimates ofR andA1), and nally decode all symbols with the same lter.

4To see this, we only need to substitute αk = 0 andR = eR into (6).
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Fig. 1. Mismatch as a function of the number of received blocks.
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Fig. 4. Mismatch as a function of the number of received blocks.
Perfect CSI, high interference level, and SNR 15 dB.

algorithm is large. If we replace the rough estimates by the true
transmitted symbols, the convergence speed of Proposed-c is recov-
ered in relation to Proposed-a and Proposed-b.

6. CONCLUSIONS

We have proposed algorithms based on the adaptive projected sub-
gradient method to MIMO systems. Our algorithms converge to a set
that includes the desired lter(s) when the covariance matrix of the
input signal does not have full rank. Additionally, our recursive l-
ters can provide good steady-state performance whether the memory
of the algorithm is small or large. These characteristics contrast with
RLS-based algorithms, which usually require a large memory to pro-
vide good steady-state performance and additional techniques to sta-
bilize the lter when the covariance matrix does not have full rank.
We have also proved that the recursive implementation of the algo-
rithm converges in the mean sense to the optimal lter. Finally, the
convergence speed of all proposed schemes can be further improved
with a technique called p-times acceleration [4, Remark 1(c)], and
our results can be straightforwardly extended to CDMA systems and
adaptive beamforming.
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