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ABSTRACT
Inference on severely data-starved Poisson processes can be dra-

matically improved by using auxiliary information about measured
discrete events in the form of “marks”. Marks are widely available
in many applications, and can take the form of photon energy, time
delay information, packet size, or other forms of characterizations.
Effectively using marks results in innovative signal processing meth-
ods and dramatic error reductions for Poisson intensity estimation.
The ef cacy of the proposed method is demonstrated in the context
of photon-limited spatio-spectral intensity estimation.

Index Terms— Poisson processes, Wavelets transforms, Mul-
tidimensional signal processing

1. MARKED POISSON PROCESSES

Marked Poisson processes arise when indirect observations
of a complex physical phenomenon are collected by counting
discrete events and measuring an associated auxiliary feature
vector for each event. Such information is available in uores-
cence microscopy, hyperspectral imaging, solar spectroscopic
imaging, and other applications. Multiphoton laser scanning
microscopy (MPLSM), for example, is a cutting-edge tool for
high-resolution imaging of living tissue and organisms used
to study cellular dynamics [1]. The result of this powerful
technique is a series of detected photons resulting from u-
orescence events occurring at each raster laser scan location.
For each observed photon, we also have access to the time at
which it was observed, its characteristic emission spectrum,
and its characteristic excited state lifetime. The challenge
here is to use small numbers of random, discrete, marked
events such as these to perform accurate inference on the un-
derlying phenomenon.
The marks associated with each observed event, while rel-

evant to application-speci c objectives, do not directly lead
to improved reconstruction capabilities in these data-starved
scenarios. When the number of observed events is severely
limited, our ability to perform very high-resolution or high-
dimensional reconstruction can rapidly become critically im-
paired. This is often counteracted by reducing the dimen-
sionality of the problem in a linear, highly suboptimal man-
ner via binning observations spatially and/or regardless of
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their marks. This approach runs counter to the entire mul-
tiscale philosophy of using the data to determine the opti-
mal spatially-varying resolution of the estimate. However,
as this paper demonstrates, it is possible to use marks in a
principled, non-linear, and non-parametric framework to dra-
matically improve reconstruction performance. In particular,
reconstruction is often most accurate when prior knowledge
of the underlying phenomenon’s smoothness or other char-
acteristics are incorporated in the form of a regularization
term or prior probability model. However, standard regular-
ization techniques do not easily incorporate key information
contained in the mark of each observed event, and hence it is
typically discarded to the detriment of reconstruction perfor-
mance.
In this paper we focus on one example of marked Poisson

processes: photon-limited spatio-spectral analysis. In a va-
riety of application domains, sensors collect photon-limited
observations of the intensity of interest, which has three-
dimensions – two spatial, and one spectral. (In some con-
texts these observations may be indirect, such as tomographic
projections. We will focus on the denoising problem in this
paper, with the understanding that it can be incorporated into
an Expectation-Maximization framework for solving inverse
problems [2].) Binning the observed photons into small spa-
tial and spectral bins results in a data cube which has zero
observations in almost all bins. Performing reconstruction on
this data by generalizing image-based methods to multiple di-
mensions typically results in regularization terms which treat
all dimensions as equal. The structures prevalent in spatial
dimensions, however, are rarely the same as structures preva-
lent in spectral dimensions. Thus, specialized regularization
methods are required for accurate and effective analysis.

2. MULTISCALE SPATIO-SPECTRAL INTENSITY
ESTIMATION

Assume that we measure Poisson observations of a spatially-
and spectrally-varying intensity over a relatively small time
window, such that the number of observed photons is small.
In particular, let f denote the N × N × M true three-
dimensional intensity, where the rst two dimensions corre-
spond to the spatial location, and the third dimension cor-
responds to the marks, which in this case are photon wave-
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lengths. Our observations are of the form

x ∼ Poisson(f),

where x has the same dimensions as f . Our goal is to in-
fer f from the measurements x as accurately as possible,
effectively utilizing the mark information contained in the
third dimension. One approach towards analyzing this three-
dimensional data cube would be to independently reconstruct
an image using the method described above for each spectral
band independently. Such a method, however, ignores corre-
lations between spectral bands, so that when spectral bands
are narrow and photon counts are small in each band, the re-
construction error is unacceptably high, as we will see in Sec-
tion 3.
The approach described in this paper will be referred to

as a hereditary TI-Haar method because it is Translation-
Invariant and roughly based upon denoising Haar wavelets
with a hereditary constraint. Taking advantage of correlations
in the data between both marks and spatial locations, the pro-
posed method entails the following two stages:

Stage 1: Perform hereditary TI-Haar Poisson intensity es-
timation in the spatial dimensions, with each leaf of
the resulting unbalanced quad-tree decomposition cor-
responding to a spectra (or series of marks).

Stage 2: Smooth each spectrum (or mark dimension) using
1D hereditary TI-Haar Poisson intensity estimation.

We will elaborate upon both these stages below.

2.1. Stage 1

In the rst stage we compute an initial estimate by determin-
ing the ideal partition of the spatial domain of observations
(assumed to be [0, 1]2) and use maximum likelihood estima-
tion to t a single, mean spectrum to each square in the op-
timal partition. The space of possible partitions is a nested
hierarchy de ned through a recursive dyadic partition (RDP)
of [0, 1]2, and the optimal partition is selected by pruning a
quad-tree representation of the observed data. (This quad-tree
is referred to as a complete RDP.) This gives our estimators
the capability of spatially varying the resolution to automat-
ically increase the smoothing in very regular regions of the
intensity and to preserve detailed structure in less regular re-
gions.
In general, the RDP framework leads to a model selection

problem that can be solved by a tree pruning process. Each of
the terminal squares in the pruned spatial RDP could corre-
spond to a region of intensity which is spatially homogeneous
or smoothly varying (regardless of the regularity or irregular-
ity between the spectral bands or marks). Such a partition can
be obtained by merging neighboring squares of (i.e. pruning)
a complete RDP to form a data-adaptive RDP P and tting
spectra to the data on the terminal squares of P . Speci cally,

given the partition P , f(P) can be calculated by nding the
average spectrum t to the observations over each cell in P .
Thus a Stage 1 intensity estimate, f̂ , is completely described
by P .
This provides for a very simple framework for penalized

likelihood estimation, wherein the penalization is based on
the complexity of the underlying partition [3]. The goal here
is to nd the partition which minimizes the penalized likeli-
hood function:

P̂ ≡ arg min
P

[
− log p(x | f(P̂)) + pen(P̂)

]

f̂ ≡ f(P̂) (1)

where

p(x|f) =
N−1∏
i,j=0

M−1∏
k=0

e−fi,j,kf
xi,j,k

i,j,k

xi,j,k!

denotes the likelihood of observing x given the image esti-
mate f(P̂) and where pen(P̂) is the penalty associated with
the estimate f(P̂). We penalize the estimates according to a
codelength required to uniquely describe each model with a
pre x code; the penalties are discussed in detail in [3, 4]. The
resulting estimator f̂ is referred to as the penalized likelihood
estimator (PLE).
This approach is very similar to the image estimation

method described in [3, 5], with the key distinction that Stage
1 as described above forces the spatial RDP to be the same
at every spectral band. This constraint makes it impossible
for the method to perform spatial smoothing at some spectral
bands but not others. In other words, when a tree branch is
pruned in the proposed framework, it means spatial cells are
merged in every spectral band simultaneously at the corre-
sponding spatial location. This approach is effective because
an outlier observation in one spatio-spectral voxel may not be
recognized as such when spectral bands are considered inde-
pendently, but may be correctly pruned when the entirety of
the corresponding spectrum is very similar to spatially nearby
spectra.

2.2. Stage 2

While Stage 1 effectively used mark information to constrain
spatial smoothing, it did not perform any smoothing between
different marks. If smoothness in the mark dimension is not
an appropriate a priori assumption, Stage 1 alone can produce
accurate results. However, in many applications smoothness
or piecewise smoothness in the mark dimension is very rea-
sonable, and Stage 2 exploits that smoothness to improve the
accuracy of the result of Stage 1.
In particular, Stage 2 consists of pruning an RDP repre-

sentation of the spectrum at each spatial location indepen-
dently. This procedure, detailed in [4], is highly analogous
to the procedure described in Stage 1, again using a minimum
description length/coding theoretic approach to regularization
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[3]. For each spatial location, we build and prune a complete
RDP of the spectrum. In this case, the RDP takes the form of
a binary tree representation, and the model t to each terminal
cell in the RDP is simply the empirical mean of the spectrum
across the corresponding spectral bands.

2.3. Translation Invariance

The accuracy of these estimates can be augmented by a pro-
cess called cycle-spinning, or averaging over shifts, resulting
in translation-invariant (TI) estimates [6]. Cycle-spinning, as
originally proposed, requires O

(
N2M log NM

)
operations,

but was derived in the context of undecimated wavelet coef-
cient thresholding in the presence of Gaussian noise, and is
dif cult to implement ef ciently in the case of Poisson noise.
The above multiscale tree-pruning methods can be modi ed
to produce the same effect by averaging over shifts, but the
increase in quality comes at a high computational cost; na¨ve
algorithms require O(N4M2) operations. Novel computa-
tional methods, however, as described in [5], can be used to
yield TI-Haar tree pruning estimates in O

(
N2M log NM

)
time.

3. EXPERIMENTAL RESULTS

As described above, while the rst stage of the proposed
method exploits spatial homogeneities, the second stage is
designed to take advantage of correlations between neighbor-
ing spectral bands. This signi cantly reduces over-smoothing
across spatial boundaries and edges while improving the re-
construction of each spectrum. To see the effectiveness of
the proposed method, consider a portion of the Shepp-Logan
phantom; we can assign a spectrum to each unique intensity
level in the phantom to get a phantom spatio-spectral inten-
sity function, as displayed in Figure 1. In this gure, each
different spectral region is assigned a label in the image to the
left, and the corresponding spectra are plotted in the image to
the right. Each spectrum is a mixture of ve Gaussians with
random amplitudes, means, and variances.
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Fig. 1. Spatio-spectral intensity. (a) Labeled unique spectral regions
in phantom image. (b) Labeled corresponding spectra.

The spatially-varying intensities for two representative
spectral bands are displayed in Figure 2(a) and (e). Note the
faint contrast between some of the features. Photon-limited

observations in the same two spectral bands are displayed
in Figure 2(b) and (f); from this data, several small and/or
faint features are not easily discernible by the eye. The data
cube is 128× 128× 128, and the total number of photons ob-
served is 1, 445, 524, resulting in an average of 0.6893 pho-
tons per voxel. In this simulation study, the penalty term in
(1) was multiplied by a scalar weight to improve empirical
performance. The weight was not selected to minimize any
particular error metric, but rather to yield generally accurate
reconstructions.
If we were to reconstruct this data cube by performing

hereditary TI-Haar image estimation (as described in [5]) on
each spectral band, we would achieve the result displayed
in Figure 2(c) and (g); the mean squared error associated
with this imaging-based data cube estimate, denoted f̂I , is
‖f − f̂I‖2/‖f‖2 = 0.0868. Spatio-spectral analysis of-
fers dramatic advantages over processing individual spectral
bands independently, as shown in Figure 2(d) and (h). The
mean squared error associated with this marks-based data
cube estimate, denoted f̂M is ‖f − f̂M‖2/‖f‖2 = 0.0258,
signi cantly lower than the MSE for f̂I . This simulation re-
sult shows several spatial features, including faint boundaries
and small-scale inhomogeneities, which are present in the true
and spatio-spectrally estimated intensities (Figure 2(d) and
(h)) but which are dif cult or impossible to visualize in the
noisy observations or independently processed spectral bands
(Figure 2(c) and (g)). Finally, Figure 3 shows ve repre-
sentative spectra and their estimates, further demonstrating
the strength of the proposed method. This experiment was
repeated one hundred times. The average MSE of f̂I was
0.0863 and the average MSE of f̂M was 0.0261.

4. DISCUSSION

This paper demonstrates that the use of marks is highly use-
ful in data-starved Poisson process analysis. The results are
particularly relevant for photon-limited imaging systems in
which we have access to supplementary information about
each observed photon, such as its observation time, wave-
length, emission spectrum, or excited state lifetime.
The proposed method consists of two key stages. During

the rst stage, we initially build a quad-tree decomposition of
the data cube in the spatial dimension, so that each leaf node
of the tree corresponds to a series of marks (e.g. a spectrum).
We then prune back this tree using a penalized likelihood cri-
terion. In contrast to processing the “image” at each mark
(e.g. spectral band) independently, this method imposes the
constraint that spatial smoothing be the same across all marks.
This can then be augmented with a second stage, which con-
sists of denoising the intensity across marks for each spatial
location independently.
In the context of image estimation, multiscale methods

based on translation-invariant (TI) Haar wavelets are near
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Fig. 2. Spatio-spectral analysis results. (a) Spatial variation of in-
tensity in 32nd spectral band. (b) Poisson observations. (c) Heredi-
tary Haar image reconstruction result, bfI ; cube MSE = 0.0868. (d)
Result after proposed reconstruction, bfM ; cube MSE = 0.0258. (e)
Spatial variation of intensity in 88th spectral band. (f) Poisson ob-
servations. (g) Hereditary Haar image reconstruction result, bfI . (h)
Result after proposed reconstruction, bfM .
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Fig. 3. Spatio-spectral analysis results. (a) True spectra at ve dif-
ferent spatial locations. (b) Observed spectra at same locations. (c)
Estimated spectra at same locations after performing intensity esti-
mation on each spectral band independently, resulting in bfI . (d) Es-
timated spectra at same locations after performing proposed spatio-
spectral intensity estimation, resulting in bfM .

minimax optimal reconstruction techniques [4]. This suggests
that the proposed method potentially has similar optimality
characteristics for some classes of marked Poisson processes.
Theoretical analysis of the proposed method is an important
component of our ongoing work.
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