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ABSTRACT

We propose a stochastic context-free grammar model whose struc-
ture can alternatively be viewed as a graphical model, and use it to
model time series. We use the inside-outside algorithm to estimate
the model parameters. We assume that the time series is a nite-order
Markov process generated by our model, and develop an algorithm
to forecast the conditional variance of the process. We use this al-
gorithm to forecast the volatility of the S&P 500 index, achieving
results that outperform both standard and more recent approaches.

Index Terms— stochastic context-free grammar, volatility fore-
casting, GARCH, graphical model.

1. INTRODUCTION

Volatility is typically de ned as the standard deviation or variance of
the return series of a nancial instrument. Volatility forecasting is an
important task in the analysis of nancial markets and has a variety
of applications such as the assessment of investment risk and option
pricing. Volatility estimates are also used as economic indicators.
Overviews of the current and past literature on volatility forecasting
as well as examples of its applications can be found in [1, 12].

GARCH model [6, 3] and its variations have been widely used
for volatility modeling. However, these models tend to have long
memory and sometimes fail to accurately track abrupt changes in
market conditions. Hidden Markov models (HMMs) which have
been widely used in signal processing for a long time—especially
in speech analysis and recognition [13]—have been recently sug-
gested to improve modeling of market changes [5, 14]. Speci -
cally, several HMM-based approaches have been proposed to model
the fact that typically high-volatility periods are shorter than low-
volatility periods. In [8], a regime-switching volatility model is
proposed where different regimes correspond to different volatility
levels. Other models have been proposed where the volatility pro-
cess is assumed to be generated by a hidden nite-state Markov pro-
cess [5, 14]. In addition, the framework of [14] models the leverage
effect, i.e., the empirical observation that negative returns typically
lead to higher volatility than positive returns. Variants of GARCH
that model the leverage effect are proposed in [7] and [16].

Motivated by the recent literature on HMM-based approaches
for volatility forecasting, we propose to use a more general class
of models called stochastic context-free grammars (SCFGs) [11].
SCFGs have recently been used with success in natural language
processing [11], RNA modeling [4], and image processing [15]. In
Sections 2–3, we present our results which use a simple SCFG time
series model for volatility forecasting. Speci cally, we model the
return series using a hidden Markov random eld whose parameters

This work was supported in part by the NSF Grant IIS-0329156.

can be estimated using the inside-outside algorithm [10] which is a
generalization of the standard forward-backward algorithm used for
estimating the parameters of an HMM. In Section 2 we introduce
our SCFG model, show how to estimate its parameters, and propose
a forecasting method based on this models. In Section 3, we illus-
trate our algorithm using the S&P 500 stock index data.

2. STOCHASTIC CONTEXT-FREE GRAMMARS FOR
TIME SERIES ANALYSIS

We propose a Markov random eld model for volatility prediction.
The model can be viewed either as a graphical model [9] or, al-
ternatively, as a stochastic context-free grammar (SCFG) [11]. We
describe one-step-ahead prediction for this model and a parameter
estimation procedure using the EM algorithm.

2.1. Model and Volatility Forecasting

We construct a probabilistic model which speci es a probability dis-
tribution fy for a T -dimensional random vector y = (y1, . . . , yT )
where T is a xed integer. This joint distribution induces a condi-
tional distribution fyT |y1:T−1

of the random variable yT given the
random vector y1:T−1 = (y1, . . . , yT−1). We then model the return
process rt for t = 1, 2, . . . as a Markov process of order T − 1, with
the following joint density of returns up to time t:

fr1:t(R1:t)
�
= fy(R1:T )

tY
τ=T+1

fyT |y1:T−1
(Rτ |Rτ−T+1:τ−1),

(1)
where Rt1:t2 = (Rt1 , . . . , Rt2) denotes the vector of observations
of the returns (rt1 , . . . , rt2) from time t = t1 until time t = t2.

Using this model, a one step ahead volatility forecast at time
t − 1 is computed as the conditional variance of rt given the ob-
servations r1:t−1 = R1:t−1. Since the process is Markov of order
T − 1, this quantity is equal to the conditional variance of rt given
the observations rt−T+1:t−1 = Rt−T+1:t−1:

μt
�
= E[rt|rt−T+1:t−1 = Rt−T+1:t−1]

σ2t
�
= var[rt|rt−T+1:t−1 = Rt−T+1:t−1] (2)

We now describe our construction of the distribution fy. Our
model is a Markov random eld whose graph structure is illustrated
in Fig. 1. We select integers t0, t1, . . . , tN such that t0 = 0 <
t1 < . . . < tN = T , and partition the vector y into N vectors
y1, . . . ,yN such that yn = (ytn−1+1, ytn−1+2, . . . , ytn) for n =
1, . . . , N . For example, in Fig. 1, N = 5, and y1 = (y1, . . . , y8),
y2 = (y9, . . . , y12), y3 = (y13, y14), y4 = (y15), and y5 = (y16).
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Fig. 1. An example of our model with domain size L = 16 and
N = 5 terminal states.

A hidden state un is assigned to each vector yn. The state un
is a discrete random variable taking values in the set {1, . . . ,M}.
Given un = i, the random variables comprising yn are condition-
ally independent and identically distributed according to the follow-
ing Gaussian density with mean μ and variance σ2i : fyt|un(x|i) =

1√
2πσi

e
− (x−μ)2

2σ2
i , for tn−1 + 1 ≤ t ≤ tn.

Note that the conditional mean μ is the same for all observa-
tions whereas the variance σi depends on the hidden state i. The
random variables un are called terminal states. An additional layer
of hidden discrete state variables s1, . . . , sN−1, called nonterminal
states, serves to model statistical dependencies among the terminal
states and the observations. The nonterminal states take values in
the set {1, . . . ,M}. The nonterminal state s1 is called the root state
and has probability pi to assume the value i, pi = Prob(s1 =
i) for i = 1, . . . ,M . Given a nonterminal state sn = k with
1 ≤ n < N − 2, the conditional joint probability of the events
{sn+1 = i} and {un = j} is denoted by pijkn , pijkn = Prob(sn+1 =
i, un = j|sn = k) for i, j, k = 1, . . . ,M and n = 1, . . . , N − 2.
Given the last nonterminal state sN−1 = k, the conditional joint
probability of the events {uN−1 = j} and {uN = i} is denoted
by pijkN−1, p

ijk
N−1 = Prob(uN−1 = j, uN = i|sN−1 = k) for

i, j, k = 1, . . . ,M. We then de ne the joint probability distribution
of the nonterminal states, terminal states, and the vector y:

fs,u,y(S,U,Y) = pS1p
UN ,UN−1,SN−1

N−1

N−2Y
n=1

p
Sn+1,Un,Sn
n

×
NY
n=1

tnY
t=tn−1+1

1√
2πσi

e
− (Yt−μ)

2

2σ2
i .

The probability density of y is then calculated by marginalizing over
all the hidden variables:

fy(Y) =
X
S,U

fs,u,y(S,U,Y).

We let G be the set of all parameters. This set consists of the root
state probabilities pi, the transition probabilities pijkn , and the mean
μ and variances σ2i of the conditional probability distributions of the
observations y. In the next subsection we describe our algorithm for
estimating the parameters from training data.

In the Appendix, we give a formula for evaluating the condi-
tional probability Prob(uN = i|y1:T−1 = Y1:T−1). Using this and

Eq. (2), we obtain the following volatility forecast equation:

var[rt|rt−T+1:t−1 = Rt−T+1:t−1]

=
MX
i=1

Prob(uN = i|rt−T+1:t−1 = Rt−T+1:t−1)σ
2
i . (3)

In order to model the leverage effect, we construct two differ-
ent parameter sets, G+ and G−. We train the model G+ using only
training data sequences in which YT−1 > 0. We train the model G−

using only training data sequences in which YT−1 ≤ 0. The esti-
mate in Eq. (3) then uses model parameters G+ if YT−1 > 0 and G−

if YT−1 ≤ 0. We call this modi ed model thresholded stochastic
context-free grammar (T-SCFG).

2.2. Parameter Estimation

Given training data R1, . . . , Rt, the maximum likelihood parameter
estimation strategy would aim to maximize the log-likelihood func-

tion L(G) �
= log fr1:t(R1:t; G) which is the logarithm of the prob-

ability distribution de ned in Eq. (1), viewed as a function of the
model parameters G. In this paper, we estimate the parameters by
solving a simpler maximization problem. Speci cally, we maximize
the following:

L̃(G) �
=

tX
τ=T

log fy(Rτ−T+1:τ ;G). (4)

Note that this would be the correct log-likelihood function if the
sequencesR1:T ,R2:T+1, . . . ,Rt−T+1:t were independent samples
from the density fy. To simplify notation, we de ne D = t−T +1

and let Y(d) = Rd:d+T−1, for d = 1, . . . ,D. Eq. (4) can then be
rewritten as follows:

L̃(G) =
DX
d=1

log fy(Y
(d);G).

We use the EM algorithm [2] to perform the maximization. It can be
shown that this maximization problem is a special case of the log-
likelihood maximization problems for standard stochastic context-
free grammars [11] and spatial random trees [15]. Exact algorithms
for the EM update for these two problems, called the inside-outside
algorithm [10] and the center-surround algorithm [15] respectively,
can therefore be adapted to yield an exact EM update for our prob-
lem. The formulas for the EM updates are described in the Ap-
pendix. The derivation of the algorithm can be found in [15].

3. EXAMPLES

We now apply our model to volatility prediction based on daily re-
turns of S&P 500 composite stock index. Observations of S&P 500
composite index, pt, are taken from April 3, 1995 to December 31,
1999, resulting in a total of 1200 log-returns rt, de ned as follows:
Rt = log(pt/pt−1). The rst 800 observations are used as training
data for parameter estimation, while the remaining 400 data points
are used as test data, as shown in Fig. 2. We take a constant volatil-
ity model of sample variance in the training set as a benchmark. We
compare the forecasting performance among four models Gaussian
GARCH(1,1), GJR(1,1), SCFG and T-SCFG. When we evaluate the
performance, squared log-returns are used as a proxy for volatility.

For the SCFG model, we specify initial parameter estimates G as
follows: similar to [14] we only allow transitions between adjacent
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Fig. 2. Log-returns of S&P 500 composite index, ranging from April
3, 1995 to December 31, 1999. The vertical line separates the train-
ing set and the test set.

MSE×10−7 % improvement
Sample Variance 1.340 0
GARCH(1,1) 1.198 10.6
SCFG 1.204 10.1
GJR(1,1) 1.160 13.4
T-SCFG 1.141 14.9

Table 1. Mean-square errors for various algorithms, as de ned in
Eq. (5), and percentage improvement over the sample variance.

states, i.e. pijkn = 0 for |i − k| + |j − k| > 1. Values of σi, i =
1, 2, . . . ,M = 8 are initialized so that σ1 < σ2 < . . . < σ8. Initial
root probabilities are pi = 1/8 for all states i. We do not estimate μ
and set μ = 0. We train our SCFG model to nd a local maximum of
the log-likelihood by using the inside-outside algorithm. We more-
over build our T-SCFG model in a similar strategy. After the G+
and G− are initialized, the models G+ and G− are then trained only
using the training sequences Y(d) = (Rd, . . . , Rd+T−1) for which
Rd+T−2 is, respectively, positive and nonpositive. The volatility at
time t is then estimated using G+ if Rt−1 > 0 and using G− if
Rt−1 ≤ 0.

We compare the forecasting performance of different algorithms
in Table 1 by calculating the mean-square error (MSE) loss function
for each algorithm, as follows:

MSE =
1

400

1200X
t=801

(R2
t − σ2t )

2, (5)

where σ2t is the volatility estimate. Note that the performance of
SCFG model is close to GARCH(1,1), and is signi cantly better
than sample variance estimates; Also note that the T-SCFG model
has the lowest MSE. In addition, the HMM-based method of [14] re-
sults in a larger MSE than GARCH on a similar data set, as reported
in [14]. Therefore this indirect comparison suggests that our method
outperforms the method of [14]. The data used in [14] is the S&P
500 daily log-return series for January 3, 1995 through December
31, 1999; however, a direct comparison to [14] is dif cult since the
data in [14] appears to be scaled and interpolated, and the speci cs
of these modi cations are not reported. In Fig. 3, we show forecast-
ing results for the GARCH and T-SCFG models: the solid line is the
square root of the volatility forecast. The GARCH model is more
“persistent”, resulting in smoother volatility forecasts. On the other
hand, high persistence of GARCH model causes overestimates of
the volatility during highly volatile periods. The structure of our T-
SCFG model with discrete hidden states allows for the parameters to
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Fig. 3. S&P 500 index log-returns (dotted lines) and square root of
the volatility forecasts (solid lines) using (a) GARCH model and (b)
T-SCFG model.

b̂0 × 10−4 b̂1 ρ
GARCH(1,1) 0.53 (±0.58) 0.71 (±0.29) 0.232
SCFG 0.35 (±0.70) 0.90 (±0.41) 0.207
GJR(1,1) 0.58 (±0.47) 0.71 (±0.22) 0.302
T-SCFG 0.05 (±0.61) 1.10 (±0.34) 0.303

Table 2. Regression parameters b̂0 and b̂1 with 95% con dence in-
tervals, and the correlation coef cient between each set of estimates
and the data.

adapt to different data patterns, as long as these patterns are well rep-
resented in the training data. It produces more noisy estimates which
adapt to rapid changes more quickly than the GARCH estimates.

To further evaluate the performance, we calculate the best linear
t of the estimates to the test data. In other words, we calculate

constants b0 and b1 that minimize the following quantity:

1200X
t=801

[R2
t − (b0 + b1σ̂

2
t )]

2

If σ2t is an unbiased estimate of r2t then we would have b0 = 0 and
b1 = 1. Table 2 lists the coef cients b0 and b1 for the four estima-
tors, together with their 95% con dence intervals. As evident from
the table, the T-SCFG model produces estimates that are the least
biased among the four models—i.e., the values of b0 and b1 for T-
SCFG are the closest to 0 and 1, respectively. In the same table,
we also provide the correlation coef cient ρ between the data and
its estimates. The correlation coef cient of 1 would mean perfect
correlation; the correlation coef cient of zero means uncorrelated-
ness. Note that the T-SCFG model achieves the highest correlation
coef cient.
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4. CONCLUSIONS

We have introduced an SCFG model for time series, and developed
a volatility forecasting algorithm based on this model. Our exper-
iments indicate that our algorithm outperforms both the standard
GARCH-based forecasting and more recent methods.
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6. APPENDIX: PARAMETER ESTIMATION ALGORITHM

We de ne the inside variables p(d)in (n, i) and q
(d)
in (n, i) and the out-

side variables p(d)out(n, i) and p
(d)
in (n, i). Even though the inside and

outside variables depend on the model parameters, we suppress this
dependence in the remainder of this section for notational conve-
nience. The inside variable q

(d)
in (n, i) is the conditional probability

density of the observed realizationYn of the random vector yn, con-
ditioned on the event {un = i}. The outside variable q

(d)
out(n, i) is

the joint probability distribution of the remaining data and the event
{un = i}. The inside variable p(d)in (n, i) is the conditional probabil-
ity density of all the observed values that are children of un, . . . , uN ,

given the event sn = i. We also de ne pin(N, i)
�
= qin(N, i) for

notational convenience. The outside variable p
(d)
out(n, i) is the joint

probability distribution of all the observed values that are children
of u1, . . . , un−1 and the event sn = i. These variables can be
calculated recursively from the observed data, using the following
formulas.

q
(d)
in (n, i) =

tnY
τ=tn−1+1

1√
2πσi

e
− (Y

(d)
τ −μ)2

2σ2
i , 1 ≤ n ≤ N

p
(d)
in (n, k) =8><
>:

q
(d)
in (N, k) n = N,
MX
i=1

MX
j=1

pijkn p
(d)
in (n+ 1, i)q

(d)
in (n, j) otherwise,

p
(d)
out(n, i) =8><
>:

pi n = 1,
MX
j=1

MX
k=1

pijkn p
(d)
out(n− 1, k)q(d)in (n− 1, j) otherwise,

q
(d)
out(n, j) =8>>>><
>>>>:

MX
i=1

MX
k=1

pijkN−1p
(d)
out(N − 1, k)q(d)in (N − 1, i) n = N,

MX
i=1

MX
k=1

pijkn p
(d)
out(n, k)p

(d)
in (n+ 1, i) otherwise.

Following [15], EM updates can be written in terms of the inside
and outside variables. The resulting formulas are as follows:

p̂i =

DX
d=1

pip
(d)
in (1, i)

fy(Y(d))

D − T + 1
,

p̂ijkn =

DX
d=1

pijkn p
(d)
out(n, k)p

(d)
in (n+ 1, i)q

(d)
in (n, j)

fy(Y(d))

DX
d=1

p
(d)
out(n, k)p

(d)
in (n, k)

fy(Y(d))

,

σ̂i =

DX
d=1

NX
n=1

tnX
τ=tn−1+1

q
(d)
out(i)q

(d)
in (i)(Y

(d)
τ − μ)2

fy(Y(d))

DX
d=1

NX
n=1

q
(d)
out(i)q

(d)
in (i)(tn − tn−1)

fy(Y(d))

.

where IA(·) is the indicator function of the set A, and fy(Y
(d)) =PM

i=1 p
ip

(d)
in (1, i).

Using Bayes rule, we can evaluate the conditional probability
Prob(uN = i|rt−T+1:t−1 = Rt−T+1:t−1) used in the conditional
variance formula of Eq. (3) as follows:

Prob(uN = i|rt−T+1:t−1 = Rt−T+1:t−1)

=
fy1:T−1,uN (Y

(d)
1:T−1, i)

fy1:T−1(Y
(d)
1:T−1)

=
q
(d)
out(N, i)

MX
j=1

q
(d)
out(N, j)

.
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