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ABSTRACT

In this paper, we propose a method to exploit waveform agility

in modern radars to improve performance in the challenging

task of detecting small targets on the ocean surface in heavy

clutter. The approach exploits the compound-Gaussian model

for sea clutter returns to achieve clutter suppression by form-

ing an orthogonal projection of the received signal into the

clutter subspace. Waveform scheduling is then performed by

incorporating the information about the clutter into the design

of the next transmitted waveform. A simulation study demon-

strates the effectiveness of our approach.

Index Terms— Clutter, radar detection, signal design

1. INTRODUCTION

The development of waveform-agile sensors provides modern

radars with several opportunities to improve performance by

dynamic adaptation of the transmitted waveform. For exam-

ple, in target tracking applications, waveforms can be dynam-

ically selected to obtain target parameter estimates that best

contribute to minimizing the tracking error [1–3]. Alterna-

tively, waveform scheduling has been used to minimize the

dwell time of the radar on a specific location, reduce ambigu-

ity due to the presence of strong clutter or jamming signals,

and classify targets [4, 5].

While waveform design has long been used to mitigate the

effect of sea clutter [6], dynamic adaptation does not appear

to have been investigated for this purpose. This problem re-

mains relevant and challenging due to the requirement to de-

tect small targets that present low signal-to-clutter ratio (SCR)

due to low grazing angles and high sea states. Early investiga-

tions generally employed a Gaussian model for the amplitude

distribution of sea clutter returns. With the advent of high res-

olution imaging capabilities, this model failed to predict the

observed increased occurrence of higher clutter amplitudes or

spikes. Instead, the compound-Gaussian (CG) was shown to

be a better fit, both theoretically and empirically [7–10].

In this paper, we consider several snapshots of the sea sur-

face that are obtained by rapid imaging with a medium pulse-

repetition frequency (PRF) radar. Employing the CG model
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for sea clutter returns, and assuming that the radar scene can

be considered practically stationary over several pulse rep-

etition intervals (PRI), we demonstrate that we can form a

waveform-independent estimate of the subspace occupied by

the clutter returns. We then form an orthogonal projection of

the received signal into this subspace to achieve clutter sup-

pression. When matched filtering is performed at the radar re-

ceiver, energy is smeared from one range-Doppler cell to an-

other in accordance with the ambiguity function of the trans-

mitted waveform. To minimize the effect of out-of-bin clutter

in a range cell that is to be interrogated (or tested) as a po-

tential target location, we estimate the strength of the clutter

in its neighboring cells using the expectation-maximization

(EM) algorithm. These estimates are used to design a phase-

modulated (PM) waveform whose autocorrelation function is

such that it minimizes this smearing effect and improves de-

tection performance.

The paper is organized as follows. In Section 2, we de-

scribe the CG model for sea clutter and the processing of the

received signal. Section 3 describes the subspace estimation

and clutter suppression, while Section 4 presents the details

of the dynamic waveform scheduling process. Simulation ex-

amples are presented in Section 5.

2. CLUTTER AND SIGNAL MODELS

We consider the radar scene to consist of a number of clutter

scatterers and at most one point target, distributed in range

and Doppler. Each dwell on this scene consists of two sub-

dwells, Sub-dwells 1 and 2, during each of which the radar

transmits K pulses of the waveforms s1(t) and s2(t).

2.1. Compound-Gaussian Model for Sea Clutter

According to the CG model, sea clutter returns are believed

to be the result of two components: a speckle-like return gen-

erated by a large number of independent scattering centers,

and a texture caused by large-scale swell structures that mod-

ulates the local mean power of the speckle return [7]. The

speckle gives rise to locally Gaussian statistics, characterized

by short correlation time (∼10 ms), while the texture decorre-

lates much less rapidly (∼50 s) [7,8,10]. The texture compo-

nent also exhibits spatial correlation and various distributions
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such as gamma, inverse-gamma, log-normal, or Weibull, have

been used to model it. In this paper, we will not assume any

particular distribution for the texture, as it is not needed for

our waveform design.

Assuming that the texture across a range-Doppler cell is

constant, we treat all scatterers within the ith cell as a single

aggregate scatterer with complex reflectivity over K snap-

shots xi = [x0
i , x

1
i , . . . , x

K−1
i ]T . The CG model states that

xi follows a complex Gaussian probability distribution with

zero mean and covariance matrix TiΣ, where Ti ≥ 0 is the

texture, and Σ ∈ C
K×K �= IK is the speckle covariance ma-

trix with IK denoting the K×K identity matrix [9]. Given the

texture and the speckle covariance matrix, the reflectivities of

two scatterers xi and xj are independent so that

p(xi,xj |Ti, Tj ,Σ) = p(xi|Ti,Σ)p(xj |Tj ,Σ). (1)

2.2. Range Processing

With a PRF ∼ 10 kHz, the duration of each sub-dwell can be

made much smaller than the decorrelation time of the speckle,

and we assume that the radar scene is practically stationary

during this period. Thus, we assume that the number of scat-

terers in each cell, and the scatterers’ delays and Doppler

shifts, are constant during a sub-dwell. However, the scatterer

amplitudes xk
i may fluctuate randomly because small changes

in range, on the order of the radar wavelength, may cause sig-

nificant changes in the phase of the received signal. We will

also assume that the texture is fully correlated across a dwell.

At the kth pulse, k = 0, 1, . . . , K − 1, the received signal is

gk(t) = bks(t − τ0)ej2πν0t +
∑

i

xk
i s(t − τi)ej2πνit + n(t),

(2)

where bk, τ0 and ν0 are the complex reflectivity, delay and

Doppler shift, respectively, of the target (if present), τi and

νi are the delay and Doppler shift of the ith scatterer, respec-

tively, and n(t) is additive noise. In (2), the transmitted signal

s(t) may be s1(t) or s2(t) as the processing of the received

signal is identical in both sub-dwells. In heavy clutter sce-

narios, the interference from clutter dominates the effect of

the noise, and we will henceforth ignore the latter compo-

nent. Since we only consider transmitted signals of very short

duration, the Doppler resolution is very poor. Therefore, we

completely ignore Doppler processing and restrict our atten-

tion to delay or range estimation alone.

The received signal in (2) is sampled at a rate fs to yield

a sequence gk[n] = gk(n/fs). This sampled signal is then

matched filtered at each sampling instant to yield the sequence

rk[n]. We define rj ∈ C
K×1 = [r0[j], r1[j], . . . , rK−1[j]]T

as the vector of matched-filtered outputs at the jth delay or

range bin. Then,

rj = bzs[j − n0] +
(N−1)∑

n=−(N−1)

xj+nzs[n], (3)

where N is the length of the transmitted signal sequence s[n],
and zs[m] =

∑N−1
n=0 s[n]s∗[n − m], |m| < N , is the value

of the autocorrelation function of s[n] at lag m. In (3), n0

and b are the range bin and complex reflectivity of the target,

respectively.

3. SUBSPACE-BASED CLUTTER SUPPRESSION

To obtain the clutter-suppressed signal, we first obtain an es-

timate of the clutter subspace for each range bin. To form the

subspace estimate Q̂j of the clutter in the jth range bin, we

define a neighborhood Γj of range bins with indices j ± n,

where N ≤ n < N + NQ. The neighborhood Γj thus in-

cludes 2NQ bins that constitute the training data but does not

include any bins that contain contributions from the scatterers

in bin j. Thus, the presence of a target in the jth bin does not

corrupt the training data used to estimate Q̂j . Next, we form

the covariance matrix

R̂j =
1

2NQ

∑
n∈Γj

rnrH
n , (4)

where the superscript H denotes Hermitian transpose. We

then perform the eigen-decomposition of R̂j and define Q̂j as

the subspace spanned by the Ne < K principal eigenvectors

of R̂j . Let Q̂⊥
j denote the space spanned by the remaining

eigenvectors of R̂j . The orthogonal projection of the received

signal in (3) on the clutter subspace Q̂j is then given by

r⊥j = Q̂⊥H

j rj , (5)

and constitutes the clutter-suppressed signal. From (1), (3),

and (4), it can be shown that the waveform dependence of R̂j

in (4) only scales its eigenvalues, thus providing a subspace

estimate that is waveform-independent.

4. WAVEFORM SCHEDULING

In order to implement the dynamic design of the waveform,

we identify a potential target location, estimate the strength

of the clutter in its neighborhood, and design the waveform so

that its autocorrelation function satisfies certain constraints.

4.1. Detection

To determine the bin that potentially contains a target, we per-

form a simple constant-false-alarm-rate (CFAR) detection on

r⊥j in (5) at the end of Sub-dwell 1. For this purpose, we first

form the test statistic γj = ‖r⊥j ‖2, where ‖ · ‖2 denotes the

L2-norm. For each range bin, a threshold γthr
j is computed as

the average of γj in the surrounding bins. The bin in which

the ratio γj/γthr
j is the maximum, is then chosen as the bin to

be interrogated in Sub-dwell 2.
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4.2. Estimation of Clutter Power

From the CG model, we note that the sea clutter can be ex-

pected to be strong where the texture component is large. If

the jth range bin is to be interrogated in Sub-dwell 2, to esti-

mate the strength of the clutter, we then require an estimate of

the texture values in all bins in the range [j−(N−1), j+(N−
1)], excluding bin j itself, since these bins contribute out-of-

bin clutter to rj . This estimate is obtained via a straightfor-

ward application of the EM algorithm [11].

Briefly, we seek an estimate of

θ = {Tj−(N−1), . . . , Tj , . . . , Tj+(N−1),Σ},

that maximizes p(r; θ), the probability of r that depends on

θ, where r = [rT
j−(N−1), . . . , r

T
j , . . . , rT

j+(N−1)]
T is the ob-

served data. Due to the many-to-one mapping in (3), this

requires a complicated multi-dimensional search. Using the

EM algorithm we instead find an estimate θ̂ that maximizes

p(x; θ), where x = [xT
j−(N−1), . . . ,x

T
j , . . . ,xT

j+(N−1)]
T is

the unobserved or complete data.

4.3. Dynamic Waveform Design

The aim of our waveform design is to minimize the magnitude

of the autocorrelation function of the transmitted waveform

s2(t) in Sub-dwell 2, in regions where strong out-of-bin clut-

ter has been estimated from data gathered during Sub-dwell

1. Let s2(t) represent a unimodular PM waveform given by

s2(t) = exp(jψ(t)), 0 ≤ t ≤ T , where the phase modulation

is expanded in terms of an orthogonal set of basis functions

as ψ(t) =
∑M

i=1 λiψi(t), and ψi(t) = u(t − (i − 1)ΔTs) −
u(t− iΔTs), where u(t) is the unit step function that is unity

except for t < 0 [12]. Here, the total waveform duration

T = MΔTs and M ≤ N , where N is the number of samples

in the designed signal. We want to determine the coefficients

λi that minimize the integral of the squared magnitude of the

autocorrelation function over the range of τ values for which

the clutter is estimated to be strong. With the autocorrelation

function of s2(t) defined as zs2(τ), we seek to minimize

J(λ) =
∫

Zτ

|zs2(τ)|2dτ, (6)

where λ = [λ1, λ2, . . . , λM ]T , and Zτ represents the (pos-

sibly disconnected) set of range values for which the texture

values are large. It is relatively straightforward to show that

zs2(τ) = (ΔTs − Δτ)
M−m∑
i=1

exp{j(λm+i − λi)}

+ Δτ

M−m−1∑
i=1

exp{j(λm+i−1 − λi)}

where |τ | = mΔTs + Δτ ≤ T, m ≤ M − 1, and 0 ≤
Δτ < ΔTs. Using the squared magnitude of zs2(τ), the gra-

dient and Hessian of J(λ) can be easily computed and its

minimization can be accomplished by the Newton-Raphson

method. All that remains is to choose the set Zτ , which is ac-

complished by selecting the bins that have the Nt < 2(N−1)
largest estimated texture values. Note that the evaluation of

J(λ) in (6) reduces to a discrete summation in this scenario.

5. SIMULATIONS

Our simulation model consists of a target that is observed by

a single sensor in the presence of simulated K-distributed sea

clutter. Accordingly, texture variables are sampled from a

gamma distribution and correlated by passing them through a

linear filter. In order to have a realistic speckle covariance ma-

trix, we estimated the autocorrelation function of the speckle

component from experimental clutter data, collected at the

Osborne Head Gunnery Range (OHGR) with the McMaster

University IPIX radar [13]. In each sub-dwell, K = 10 pulses

of a 1.5 μs duration signal are transmitted. The waveform

s1[n] is a linear frequency modulated (LFM) chirp with a fre-

quency sweep of 50 MHz and it was ensured that s2[n] did

not exceed the time-bandwidth product of s1[n] so that a fair

comparison could be made. The PRI is 100 μs so that the

duration of each sub-dwell is 1 ms, which is well within the

decorrelation time of the speckle component, while the sam-

pling frequency was fs = 100 MHz. The number of eigen-

vectors Ne of the covariance matrix in (4) that contribute to

the subspace estimate were chosen so that 99.99% of the total

energy was retained, and a neighborhood of NQ = 20 bins

was used to obtain the subspace estimates. The amplitude of

the target return b in (3) was sampled from a zero mean com-

plex Gaussian process with covariance matrix σ2
IK , where

σ2 was chosen to satisfy specified values of SCR. We define

the SCR to be the ratio of the target signal power to the total
power of the clutter in the range bin containing the target.

Fig. 1 shows Monte Carlo averaged receiver operating

characteristic (ROC) curves when only subspace-based clut-

ter suppression is used. Since no dynamic waveform design

has been employed, these curves represent the performance

at the end of Sub-dwell 1. The advantage of using the clutter

suppression procedure described in Section 3 is significant,

and Fig. 1 indicates reasonable performance even at low SCR

such as −35 dB. This can be primarily attributed to the fact

that the clutter occupies a low-rank subspace of the covari-

ance matrix of the received signal.

The advantages of waveform design can be seen in Fig. 2,

where the ROC curves at the end of Sub-dwell 2 ( in which the

dynamically designed waveform is transmitted) are compared

with those at the end of Sub-dwell 1. We observe that the per-

formance improves further when the waveform is adapted to

the clutter. Specifically, the ROC curve for -28 dB SCR at the

end of Sub-dwell 2 is comparable to the ROC curve for -25 dB

SCR at the end of Sub-dwell 1. Also, at a probability of false

alarm PFA = 0.01, the probability of detection PD improves

by 20% and 25% at SCR of -28 dB and -25 dB, respectively,

when the designed waveform is used. This improvement is
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Fig. 1. ROC curves with (dotted lines) and without (solid

lines) clutter suppression using a static LFM chirp waveform.

The indicated values correspond to SCR in dB.

due to the fact that the waveform design procedure described

in Section 4 provides a reduction of upto 30 dB in autocorre-

lation magnitude in range bins where the clutter is estimated

to be strong.

6. CONCLUSION

We have presented an automatic waveform scheduling algo-

rithm that employs subspace-based clutter suppression and

dynamic waveform design to improve target detection in heavy

sea clutter. The method exploits the CG model for sea clutter

returns and designs waveforms with autocorrelation functions

which have small magnitude where the clutter is estimated to

be strong. Simulation results demonstrate that significant im-

provements in detection performance are obtained by clutter

suppression while further gains are made by the introduction

of waveform scheduling. In recent work, we have demon-

strated greater performance gains due to waveform schedul-

ing by replacing the CFAR detector with a generalized like-

lihood ratio test (GLRT) detector [14]. We are currently in

the process of including of Doppler processing in our work.

Note that this is not a straightforward extension because the

need for longer waveforms to achieve high Doppler resolution

may invalidate the assumption of complete correlation of the

texture across a dwell.
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