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ABSTRACT

The problem of source localization using distributed acoustic
sensor networks is considered in this paper. The acoustic sen-
sors detect and estimate the time of arrival (TOA) of the acoustic
transient emitted from a source of interest. The estimated TOA
estimates are then transmitted to a base station for collaborative
source localization. In realistic scenarios, a subset of the TOA’s
could typically be erroneous owing to various detrimental fac-
tors. The standard least squares-based methods totally fail in
presence of even only one outlier or erroneous TOA. By mod-
eling the TOA estimation error as Cauchy-Lorentz distribution,
a robust source localization algorithm is derived. Numerical ex-
periments are provided to show the robustness and accuracy of
localization of the proposed algorithm.

Index Terms— Robust estimate, source localization, acoustic
sensor network

1. INTRODUCTION

Source localization using sensor arrays has been a research topic
of great interest for decades. For instance, the problem of direc-
tion of arrival (DOA) estimation of a far- eld signal based on
the sampled data received by an array of sensors has been ex-
tensively investigated (see [1]). More recently, near- eld source
localization using distributed sensor nodes has drawn consider-
able attention [2]. In the context of audio communication and
speech processing, source (speaker) localization is usually done
based on the estimate of time different of arrival (TDOA) be-
tween the elements of a microphone array [3]. Source local-
ization is subsequently carried out based on the least square
estimation (LSE) or its variants.
In this paper, we consider near- eld acoustic transient source

localization using time of arrivals (TOA’s) in distributed sensor
networks. Compared to the applications to the speech process-
ing systems [3], we consider a more dif cult and realistic sce-
nario where some of the distributed unattended acoustic sensors
may generate totally erroneous TOA estimates (or outliers) due
to various detrimental factors, such as propagation delay, mul-
tipath interference, sensor location error, false alarm, or simply
device failure. The solution to this problem is particularly of
∗During the period of this research Y. Jiang was a part-time employee at
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interest to numerous realistic battle eld surveillance systems
e.g. in sniper detection and localization. In [4], the authors em-
ployed a large number of nodes in order to provide redundancy
to combat the sensor failure problem. In particular, they de ned
a so-called consistency function over a four-dimensional (three
spatial dimension plus on temporal dimension) space-time cu-
bic. A bisection algorithm is then applied to nd the space-time
area where the consistency function is maximized. The exper-
imental results in [4] showed the effectiveness of the proposed
method at the expense of relatively high computational burden.
Clearly, the standard LSE-based methods fail even if only

one outlier is present. To overcome this problem, we model the
TOA estimation error as a Cauchy-Lorentz distribution. This
yields a simple and yet very robust (to outliers) maximum like-
lihood estimate of the source localization, which can easily be
solved numerically using the iterative search routine. The pro-
posed algorithm automatically eliminates the effects of the out-
liers and generates very accurate localization as long as a few
TOA estimates are reasonably accurate. When all the TOA es-
timation errors are small, the proposed method performs simi-
larly to the LSE. Comparing to the method in [4], our proposed
algorithm is simpler and computationally more ef cient. Simu-
lation results are provided to show the robustness and accuracy
properties of the proposed method.

2. PROBLEM FORMULATION

A distributed acoustic sensor network for acoustic transient source
localization is illustrated in Figure 1, where theK passive acoustic
sensors are illustrated by circles “◦”. The sensor locations,
pk = [xk, yk, zk]

T , k = 1, 2, . . . ,K, are assumed to be
known. The location of the source, p(s) = [x(s), y(s), z(s)]T ,
is shown by an asterisk “∗” in this gure. Here the superscript
(s) stands for “source”.
Suppose the source emits an acoustic transient at time T (to

be determined) propagating spherically in the air at a constant
and known speed of c. The TOA of the signal received at the
kth line-of-sight sensor is

Tk = T +
‖pk − p(s)‖

c
(1)

where ‖ · ‖ is Euclidean norm. The signal received by the kth
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Fig. 1. The layout of the 3-D sensor networks (illustrated by
“o”). The transient acoustic source is illustrated by “∗”.

distributed sensor can then be represented by

xk(t) =

{
αks(t− Tk) + Ik(t) + nk(t) t ≥ Tk
nk(t) t < Tk

(2)

where s(t) is the transient signal waveform, αk = 1
dk,s

repre-
sents the effect of signal attenuation which is proportional to
its travel distance, dk,s = ‖pk − p(s)‖, I(t) represents the in-
terference and the multipath signal component, and n(t) is the
background noise. The sensors use either the energy detector
or zero crossing encoding-based method to estimate TOA [4].
Clearly, due to many factors such as ambient noise, multipath
effects, time synchronization error, and sensor location error,
the estimated TOA at each sensor differs from the true TOA by
some error, i.e.

T̂k = Tk + ek, (3)

where ek is the estimation error. We assume that the sensors
are synchronized. A method for time synchronization is dis-
cussed in [4]. The estimated TOA’s T̂k’s are then sent to the
base station (or a gateway node), where the source is localized
in both spatial and temporal domain, i.e., p(s) and T are es-
timated based on T̂k’s. In theory we need only four TOA es-
timates to estimate the unknowns. However, the redundancy
of having more than four TOA estimates leads to much better
robustness in source localization.
In what follows, we devise a robust source localization algo-

rithm that can still yield accurate source localization assuming
that a few of the sensors have suf ciently accurate TOA esti-
mates while the others provide erroneous TOA estimates.

3. ROBUST SOURCE LOCALIZATION

3.1. Least Squares-Based Estimation

First, let us examine the LSE-based source localization in order
to provide insights into the reasons why this type of method is
not robust against the outliers, hence leading us to the robust
solution.

To jointly estimate the source location p(s) and the time T ,
the LSE gives

p̂(s), T̂ = arg min
p(s),T

K∑
k=1

[
‖pk − p(s)‖ − c(T̂k − T )

]2
. (4)

Indeed, if the TOA estimation error, ek ∼ N(0, σ2) is i.i.d.
Gaussian, then it is straightforward to show that the LSE is also
a maximal likelihood estimate (MLE). In practice, the distrib-
ution of the estimation error may be far from the Gaussian as-
sumption. For example, it is typical in the practical scenario
that some sensors yield reasonably accurate TOA estimates,
while the others are totally erroneous. Even a single failed TOA
estimate (outlier) can lead to completely wrong LSE, which is
qualitatively explained as follows. Notice that the cost func-
tion in (4) is the sum of the K squared tting errors. If one of
estimates T̂k is an outlier, then the corresponding squared error

Ek(p(s), T ) � [‖pk − p(s)‖ − c(T̂k − T )]2 (5)

will “blow up”, and so is the total squared error. This conse-
quently fails the whole estimation process. In other words, the
LSE is very sensitive to the presence of outliers. One remedy to
make the estimate robust against the outliers is to deemphasize
the cost function for the very large Ek(p(s), T ), which is the
underlying idea of the proposed robust algorithm.
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Fig. 2. The PDFs of Gaussian distribution and Cauchy-Lorentz
Distribution.

3.2. Proposed Robust Algorithm

Here, we model the scaled TOA estimation error

c · ek = c(T̂k − Tk) = c(T̂k − T )− ‖pk − p(s)‖
as a random variable of Cauchy-Lorentz distribution [5]:

f(x) =
1

πν
(
1 + x

2

ν2

) , (6)

where the parameter ν determines the half-width at half max-
imum. The probability of functions (PDF’s) of the Gaussian
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distribution N(0, 1) and the Cauchy distributions of (6) with
parameter ν = 1 and ν = 2 are plotted in Figure 2. We can see
that the Cauchy-Lorentz distribution has much heavier “tails”
compared to the Gaussian PDF. This heavy tail allows for bet-
ter ability to represent the effects of erroneous measurements or
the outliers.
Based on the Cauchy-Lorentz assumption of the TOA esti-

mation errors, we derive the MLE of p(s) and T :

p̂(s), T̂ = arg max
p(s),T

K∏
k=1

f
(
c(T̂k − T )− ‖pk − p(s)‖

)
, (7)

where f(·) is given in (6). After some straightforward manipu-
lations, (7) can be simpli ed to be

p̂(s), T̂

= arg min
p(s),T

K∑
k=1

log

[
1 +
(‖pk − p(s)‖ − c(T̂k − T ))2

ν

]

(8)

= arg min
p(s),T

K∑
k=1

log

[
1 +
Ek(p(s), T )

ν

]
(9)

where from (8) to (9) we have used the de nition in (5).
Here we see that even if the kth sensor has an erroneous

TOA estimation (i.e. a very large Ek
(
p(s), T

)
), the detrimental

in uence is deemphasized by the function log
[
1 +

Ek(p(s),T)
ν

]
.

Therefore, compared to the standard LSE the proposed method
effectively puts less weight on the outliers. On the other hand,
if all the TOA estimates are reasonably accurate, then

p(s), T̂ ≈ arg min
p(s),T

K∑
k=1

Ek
(
p(s), T

)
, (10)

since log(1 + x) ≈ x for x around zero. In other words, the
robust source localization algorithm performs similarly to the
LSE in this case. Now, we see the role of parameter ν; as ν
increases, the robust algorithm performs more like the standard
LSE, but for small ν, the proposed algorithm puts relatively less
weights to the erroneous TOA’s.

3.3. Iterative Algorithm

The nonlinear estimation in (9) (as well as in (4)) can be per-
formed using the standard Newton’s method. Let l(θ) be the
log-likelihood cost function in (9), where

θ � [x(s), y(s), z(s), T ]T ,

the Newton’s method can be written as

θi+1 = θi − J−1(θi)d(θi) (11)

where

J(θi) =

[
∂2l(θ)

∂θ∂θT

]∣∣∣∣
θ=θi

(12)

and
d(θi) =

[
∂l(θ)

∂θ

]∣∣∣∣
θ=θi

. (13)

∂l(θ)

∂xk
=

K∑
k=1

2 (xk − x(s))
(
‖p(s) − pk‖ − c (T̂k − T )

)
‖p(s) − pk‖

(
ν +
(
‖p(s) − pk‖ − c (T̂k − T )

)2) .
(14)

For ∂l(θ)
∂yk

and ∂l(θ)
∂zk

, they can be obtained from (14) by replac-
ing xk by yk and zk, respectively.

∂l(θ)

∂T
=

K∑
k=1

2 c
(
‖p(s) − pk‖ − c (T̂k − T )

)
ν +
(
‖p(s) − pk‖ − c (T̂k − T )

)2 . (15)

The second order derivatives are more complicated which we
omit here. As an alternative approach we can use the build-
in MatlabTM function FMINUNC to solve this unconstraint opti-
mization problem. In both approaches, we need to set an initial
value θ0 for the iterative search. Although global optimum can-
not be guaranteed as the cost function is not a convex function
of the estimated parameters, the extensive experiments suggest
that the global optimal can be reached most of the times even if
the initial value is quite far away from the true value.

4. SIMULATION RESULTS

We present the results of three simulations to demonstrate the
effectiveness of the proposed algorithm. For all these experi-
ments, we consider the distributed sensor network with layout
shown in Figure 1 where the 10 sensors are indexed. The 3-D
locations of the 10 sensors are

(−20,−10, 0), (−20, 10, 0), (−10,−20, 5), (−10, 20, 5),
(0,−10, 0), (0, 10, 0), (10,−20, 5), (10, 20, 5),

(20,−10, 0), (20, 10, 0).
The source location is p(s) = (50, 50, 5) and it gives off an
acoustic transient signal at time T = 0, which propagates spher-
ically with speed c = 344 m/s.
In the rst study, we assume that all the 10 sensors esti-

mate the TOA’s quite accurately and the estimation errors are
iid Gaussian, i.e., ek ∼ N(0, σ2). In this case, LSE is indeed
an ML estimate and hence is optimal. Figure 3 compares the
mean squared errors (MSE) of the estimated spatial location
using standard LSE and the proposed robust estimate with the
parameter ν = 1. We see that the performance of the robust
method is very close to the LSE, which agrees with the analysis
in Section 3.2. In this simulation, the initial value of the source
location is chosen to be p̂(s)0 = (0, 0, 0) and T̂0 = 200 (ms) that
far from actual values.
In the second study, we check the robustness of the pro-

posed method against the erroneous TOA estimates. We let the
rst N (N < K) sensors to have TOA estimation error with
large variance σ2τ = 1 (sec2), and the rest to have good estimate
with στ = 10−4 sec, or 0.1 ms. Such cases occur in scenar-
ios where building or other objects are in the line-of-sight of
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Fig. 3. Comparison of the MSEs of the estimated location using
the LSE of (4) and the robust estimate (9). The result is based
on 500 Monte Carlo Trials.

the rst N sensors. Suppose the required 3D localization pre-
cision is 2 meters, i.e., we regard the estimated source location
more than 2 meters away from the true value as a failed esti-
mate. The results in Figure 4 indicate that the LSE produces
failed estimate with probability one even if there is only one
outlier. In contrast, our proposed method is very robust against
the outliers. It yields accurate estimate (3D estimation error of
less than 2 meters) with probability close to 60% even when
ve out of ten sensors produce erroneous TOA estimates. The
performance of the proposed method is clearly dependent on
choice of the parameter ν. As we have pointed out in Section
3.2, when ν increases, the propose method performs more like
the LSE, this observation is veri ed in the results in Figure 4.
On the other hand, small ν, e.g. ν = 0.1, does not yield bet-
ter performance than ν = 0.25. The theoretical analysis on the
in uence of ν remains an open problem.
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In the nal study, we compare the performances of the pro-
posed method with different initial value θ0 for the source loca-
tion. We include, as a benchmark, the case where we set θ0 as
the true value. Figure 5 shows that compared to this benchmark
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Fig. 5. The in uence of the initial guess of p(s) and T over
and Probabilities of failure of robust estimate (9). The result is
based on 200 Monte Carlo Trials.

the relative performance degradation is very moderate in spite
of the fact that the initial values p̂(s)0 = (0, 0, 0) and T̂0 = 200
ms are far from the true ones p(s) = (50, 50, 5) and T = 0. In
practice, some a priori information can be exploited to choose
a reasonably accurate initial guess of the source location.

5. CONCLUSIONS

In this paper, we have considered the problem of acoustic source
localization based on the sensor-level TOA estimates in distrib-
uted sensor networks. By modeling the TOA estimation errors
as Cauchy-Lorentz distribution, we derived a simple algorithm
which is shown to be very robust against the TOA outliers.
Although the proposed algorithm must be implemented itera-
tively using an initial guess of the unknown parameters, we
have shown via simulations that it can converge with high prob-
ability to the global optimal even if the initial value is quite far
away from the true value. Simulation results are presented to
validate the robust performance of the proposed algorithm.
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