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ABSTRACT

Source localization is investigated for a sensor network with
passive sensors. The signal emitted by the source endures
Rayleigh fading during its propagation, and its average in-
tensity is a function of the distance from the source. Maxi-
mum likelihood (ML) source location estimators that use the
output, or its quantized version, of the non-coherent receiver
is proposed. The ML estimators’ Cramér-Rao lower bounds
(CRLBs) are derived. Due to the fading effect, the proposed
estimator’s performance is degraded, compared to the ideal
case without fading. However, it can still accurately estimate
the source’s position and intensity, and achieve its CRLB with
relatively small amount of resources, namely small number of
observations, sensors and quantization bits.

Index Terms— Sensor networks, localization, Rayleigh
fading, quantization, Cramér-Rao lower bound

1. INTRODUCTION

For a sensor network with a large number of densely deployed
sensors, it is possible to accurately estimate the source po-
sition based on intensity (energy) of the signal, without the
need for additional sensor functionalities and measurement
features, such as the direction of arrival (DOA) or time-delay
of arrival (TDOA). Energy-based methods have been proposed
in [1, 2], where analog measurements from sensors are re-
quired to localize the source using either a least-square or a
ML estimator. For a sensor network with limited resources
(energy and bandwidth), it is desired that only quantized data
be transmitted from local sensors to the processing node (fu-
sion center). In our previous work [3], we have proposed an
intensity based ML target location estimation method using
only quantized data.

In all the previous work on energy-based localization meth-
ods, it is assumed that the signal power is a deterministic func-
tion of the distance from the source. However, this is often not
true in many practical scenarios, where the sensors are very
small compared to the surrounding structures, and multipath
occurs due to the re ections from the ground and surrounding
structures [4]. In such realistic cases, the ML location estima-
tor proposed in [1, 2, 3] can not function properly. Here, we
introduce a new ML location estimator that takes into account

the signal fading effect due to multi-path. Experiments show
that this method achieves the CRLB even with relatively small
number of sensors, observations and quantization bits.

2. PROBLEM FORMULATION

We assume that a source is located in a sensor eld with N
sensors, whose locations are known. The signal emitted by
the source attenuates isotropically as follows:

a2i = P
′

0d
n
0/d

n
i (1)

where ai is the signal amplitude at the ith sensor, P ′0 is the
signal power measured at a reference distance d0, and di is
the ith sensor’s distance from the source

di =
√
(xi − xt)2 + (yi − yt)2 (2)

in which (xi, yi) and (xt, yt) are the coordinates of the ith
sensor and the source, respectively, and n is the power decay
exponent. Here, we let P0 = P ′0/4, and assume that d0 = 1.
As a result, (1) becomes

a2i = 4P0/d
n
i . (3)

Each sensor takesm observations of the signal, at a frequency
of 1/Tb. For each observation, a sensor senses the signal for
a period of T (T < Tb). It is assumed that the observa-
tion frequency 1/Tb is high so that the source is static dur-
ing the period of m observations. Therefore, dij = di, for
j = 1, · · · ,m, where dij is the ith sensor’s distance from the
source at the jth observation interval.

The source emits a narrow band signal, and during the jth
observation interval at the ith sensor the signal is of the form

rij(t) = aijg(t)cos(ωct+ φ(t) + ϕij) + wi(t) (4)

where aij is the signal amplitude, g(t) is a slowly varying
envelope, which is normalized so that∫ T

0

g2(t)dt = 1 (5)

ωc is the known carrier frequency, φ(t) is a known phase mod-
ulation, ϕij is the initial phase, and wi(t) is a white Gaussian
noise with a constant power spectral density N0/2.
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For the ideal case, we assume that ϕij is known and aij =
ai is an unknown constant. Note that during each observation
interval, the signal energy is

Esi =

∫ T

0

[aig(t)cos(ωct+ φ(t) + ϕij)]
2dt = 2P0/d

n
i (6)

the noise energy is

Eni = E

[∫ T

0

w2
i (t)dt

]
= N0/2 (7)

and the signal to noise ratio (SNR) at the ith sensor is there-
fore ρi � 4P0/(N0d

n
i ). It is well known that the output of

the optimum coherent receiver at observation interval j and
sensor i is

uij =

∫ (j−1)Tb+T

(j−1)Tb

rij(t)g(t)cos(ωct+ φ(t) + ϕij)dt

which follows a Gaussian (
√
P0/dni , N0/4) distribution [5].

Under the white noise assumption, the suf cient statistic for
the multi-observation case is

Ui =
1

m

m∑
j=1

uij (8)

which follows a Gaussian (
√
P0/dni , N0/4m) distribution.

In more practical cases, the source signal usually propa-
gates via multiple paths. As a result, its envelope uctuates
and its phase will be a random variable (RV) [4]. We assume
that the signal endures Rayleigh fading during its propaga-
tion. The signal amplitude aij is uctuating independently
across observations and across sensors, which is modeled as

aij = hjai (9)

where hj follows a Rayleigh distribution:

f(hj) = 2hje
−h2j (10)

The average signal energy during each observation, which is
E[h2j ]a

2
i /2, is still the same as the signal energy in the ideal

case, which is 2P0/dni as provided in (6). The phase ϕij is a
RV that follows a uniform distribution in [0, 2π], and is also
independent across observations and across sensors. It is well
known that the output of the optimum non-coherent receiver
to detect a signal with a random phase is

vij =

[∫ (j−1)Tb+T

(j−1)Tb

rij(t)g(t)cos(ωct+ φ(t))dt

]2

+

[∫ (j−1)Tb+T

(j−1)Tb

rij(t)g(t)sin(ωct+ φ(t))dt

]2
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Fig. 1. The signal intensity contours of a source located in a sensor
eld.

With the aid of standard references for non-coherent detec-
tion, such as [5], we can show that vij follows an Exponential
(P0/d

n
i + N0/2) distribution. For a multi-observation case,

the suf cient statistic is

Vi =

m∑
j=1

vij (11)

and it follows a Gamma (m,P0/dni +N0/2) distribution.

3. DEVELOPMENT OF ML LOCATION ESTIMATOR

3.1. Location Estimator using Analog Data

In this section, we assume that the processing node receives
analog data from local sensors, and estimates the parameter
vector: θ = [P0 xt yt]

′. For the ideal case with coherent
receivers, the likelihood of analog dataU = [U1, · · · , UN ] is

f(U|θ) =
N∏

i=1

1√
2πσ

e−
(Ui−μi)

2

2σ2 (12)

where μi �
√
P0/dni and σ2 � N0/4m. The ML estimation

procedure is to nd the optimal θ that maximizes f(U|θ).
The CRLB matrix for this estimation problem is provided in
the following theorem:

Theorem 1 The inverse of the CRLB matrix, or the Fisher
information matrix (FIM), for an estimator using analog out-
puts from coherent receivers is

J1 =

N∑
i=1

α1iCi

Ci =

⎡
⎢⎢⎢⎣

1
4P0dni

n(xi−xt)

4dn+2
i

n(yi−yt)

4dn+2
i

n(xi−xt)

4dn+2
i

P0n
2(xi−xt)

2

4dn+4
i

P0n
2(xi−xt)(yi−yt)

4dn+4
i

n(yi−yt)

4dn+2
i

P0n
2(xi−xt)(yi−yt)

4dn+4
i

P0n
2(yi−yt)

2

4dn+4
i

⎤
⎥⎥⎥⎦
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where α1i � 4m/N0 is the Fisher information (FI) of μi con-
tained in data Ui.

We skip the details of the proof, which follows a similar
procedure used in the proof of Theorem 3 in Section 3.2.

For the Rayleigh fading case with non-coherent receivers,
the likelihood of dataV = [V1, · · · , VN ] is

f(V|θ) =
N∏

i=1

1

(m− 1)!βm
i

V m−1
i e

−
Vi
βi (13)

where βi � P0/d
n
i + N0/2. The ML estimation procedure

is to nd the optimal θ that maximizes f(V|θ). The FIM for
this estimation problem is provided in the following theorem:

Theorem 2 The FIM for an estimator using analog outputs
from non-coherent receivers for Rayleigh faded signals is

J2 = α2iCi

where α2i � 4mP0/(βid
n
i ) is the FI of μi contained in Vi.

We skip the details of the proof, which follows a similar
procedure used in the proof of Theorem 3 in Section 3.2.

From Theorems 1 and 2, an immediate observation is that
under both the ideal and Rayleigh fading cases, the FIMs
contributed by any individual sensor are proportional to each
other, and are scaled by different factors (α1i and α2i), whose
ratio is

α1i/α2i = 1 + ρi/4 + 1/ρi (14)

meaning that in the ideal case the output of the coherent re-
ceiver is always more informative than that of the non-coherent
receiver in the fading case. This is because in the Rayleigh
fading case, there is more uncertainty caused by uctuating
signal amplitude and an unknown random signal phase.

3.2. Location Estimator using Quantized Data

In this section, we study the location estimator using quan-
tized output of the non-coherent receivers at sensors. We
assume that each sensor sends quantized nb-bit data to the
processing node, which are denoted as D = {Di : i =
1, · · · , N}, where Di can take any discrete value from 0
to 2nb − 1. We assume that the set of quantization thresh-
olds for the ith sensor is �ηi = [ηi0, ηi1, · · · , ηiL], where
L � 2nb , ηi0 = 0 and ηiL = ∞. The probability that Di

takes a speci c value l (0 ≤ l ≤ L− 1) is

pil(�ηi, θ) = F
(
ηi(l+1), m, βi

)− F (ηil, m, βi) (15)

where

F (x, m, βi) = 1− e−
x
βi

m−1∑
k=0

(x/βi)
k

k!
(16)

is the Gamma distribution function. The likelihood ofD is

p(D|θ) =

N∏
i=1

L−1∏
l=0

pil(�ηi, θ)
δDi,l (17)

where δDi,l is Kronecker’s delta function. The ML estimation
procedure is to nd the optimal θ that maximizes f(D|θ).
The FIM for this estimation problem has been provided in the
following theorem:

Theorem 3 The FIM for an estimator using quantized output
of non-coherent receivers in the Rayleigh fading case is

J3 =

N∑
i=1

α3iCi

where

α3i �

L−1∑
l=0

4P0

[
ηmil e

−ηil/βi − ηmi(l+1)e
−ηi(l+1)/βi

]2
dni [(m− 1)!]2β2m+2

i pil(�ηi, θ)

is the FI of μi contained in dataDi.

Proof: Given the independence of data from different sensors,
we have

J3 =

N∑
i=1

J3i (18)

where J3i is the FIM of sensor i:

J3i = E
{
[∇θ ln p(Di|θ)] [∇θ ln p(di|θ)]T

}

= E

{[
∂ ln f(Di|θ)

∂βi

∂βi

∂μi

]2}
∇θμi[∇θμi]

T (19)

Skipping some intermediate steps, we can show that the rst
term in the second line of (19) is α3i, and in [3], we have
shown that ∇θμi[∇θμi]

T = Ci. Q.E.D.

4. EXPERIMENTAL RESULTS

In our experiments, we assume that sensors are uniformly de-
ployed as shown in Fig. 1, n = 2, P0 = 5000, and N0 = 2.

4.1. Analog Data

In Fig. 2, the performance of the ML estimator using analog
data is compared with the CRLB under both the ideal case
and the fading case. As we can see, the estimation perfor-
mance in the ideal case with coherent receivers is always bet-
ter than that in the fading case with non-coherent receivers.
The performance degradation in the latter case is caused by
the uncertainty of the signal phase and the uctuation of the
signal amplitude. As the number of observationsm increases,
the ML estimator’s performance improves signi cantly and
quickly converges to the CRLB, under both cases.
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Fig. 2. Root mean square (RMS) errors for analog data (xt = yt =
0, N = 64). Solid line: ideal case CRLB, star: ideal case ML
estimation, dashed line: fading case CRLB , dashdot line +circle:
fading case ML estimation.

4 5 6 7 8 9 10 11 12 13 14

400

600

800

1000

1200

R
M

S
 e

rr
or

 (
P

0)

4 5 6 7 8 9 10 11 12 13 14

4

6

8

10

R
M

S
 e

rr
or

 (
x t)

4 5 6 7 8 9 10 11 12 13 14

4

6

8

10

R
M

S
 e

rr
or

 (
y t)

Square root of N (K)

Fig. 3. RMS errors for quaternary data (xt = 15, yt = 20, m =
10). Solid line + star: CRLB, dashdot line + circle: ML estimation.
Quantization threshold: �η = [14.57 17.95 25.69]′.

4.2. Quantized Data in Fading Case

In Fig. 3, the performance of the ML estimator using qua-
ternary data is compared with its CRLB. For simplicity, we
assume that all the sensors use the same threshold to quantize
the non-coherent receiver output. Also, we de ne K �

√
N .

AsN increases, the ML estimator’s performance quickly con-
verges to the CRLB. Actually, there is not much difference
between the estimator’s performance and its CRLB when N
is as low as 36. This means that our ML estimator is ef cient,
namely it reaches its CRLB, even for quantized data with a
small number of bits, and a small number of sensors.

In Fig. 4, the CRLB RMS errors are shown for multi-bit
quantized data. The thresholds are chosen such that they di-
vide the interval [Vl, Vu] evenly into L intervals, where Vl =
F−1(0.05,m, βmin), Vu = F

−1(0.95,m, βmax), and βmin,
βmax are the minimum and maximum values of βis among
all the sensors, respectively. Even with this simple quantiza-
tion scheme, the CRLB performance of the estimator based on
quantized data converges to that using analog data quickly, as
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Fig. 4. CRLB on RMS errors for multi-bit quantized data (xt =
yt = 0, N = 64, m = 10). Solid line: analog data, dashed line +
circle: quantized data.

shown in Fig. 4. For as little as four bit data, the performance
of the estimator based on quantized data is already very close
to that of the estimator using analog data.

5. CONCLUSIONS AND DISCUSSION

We presented an intensity-based ML source location estima-
tor that works under imperfect situations where signal suffers
from Rayleigh fading. The ML estimator uses the output or its
quantized version, from a non-coherent receiver. Simulation
results show that the estimator based on analog data is very
accurate and is ef cient even with a small number of obser-
vations, and the estimator based on quantized data is ef cient
with a relatively small number of sensors and a very small
number of quantization bits. In addition, the performance of
the estimator based on quantized data converges to that of the
estimator using analog data very quickly as the number of bits
increases. In this paper, we adopted a very intuitive scheme
to quantize the non-coherent receiver output. Our future work
will include research on quantization threshold design.
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