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Abstract— We present a digital background technique for correcting
the time and gain mismatches in a time-interleaved analog-to-digital
converter (ADC) system. The proposed blind calibration is applicable
to any number of time-interleaved ADCs and requires only modest
oversampling. Simulation results show fast convergence and desirable
detection accuracy. After the mismatch errors detection, the resulting
signal to noise ratio (SNR) of the output signal is shown to be higher
than the SNR of the input signal in a 16-ADC system.

Index Terms— Analog-digital conversion, Calibration, Nonlinear esti-
mation, Signal sampling, Least squares methods.

I. INTRODUCTION

The ever-increasing demand for higher data rate communication

applications requires high-speed and high-resolution ADCs. Such

ADCs can be achieved by employing a time-interleaved architecture,

which has attracted considerable attention in recent years [1], [2],

[3].

Time-interleaved ADCs increase the sampling rate of a system by

sending the analog input signal simultaneously to multiple ADCs,

which have the same sampling rate but different phases [4], as

depicted in Fig. 1. In this way, a system with sampling rate
�� can

be realized from � individual ADCs, each operating with a sampling

rate
�� � . This idea has been proposed for various applications such

as ultra wideband communications [2], [5]. However, interleaving of

multiple ADCs is sensitive to the time errors and gain mismatches

between different interleaved ADCs, which degrades the performance

of ADCs significantly if the errors remain uncorrected [6].
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Fig. 1. Block diagram of the time-interleaved ADCs.

A considerable amount of research has been done on calibration

to correct the timing errors and gain mismatches. Hardware methods

for compensation have been proposed in [7], [8], however the analog
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components involved make such approaches often difficult to use in

practice. Some methods employ training signals methods [9], [10],

which is also known as foreground- or nonblind calibration. This

approach however may cause problems since it requires to inject

the training signal periodically during operation of the ADC. In [1]

blind estimation methods are proposed with some appealing features,

such as the calibration can be done in the normal operation and the

mismatch changes are easy to track.

As pointed out in [11], existing estimation methods are “either
imprecise, limited in the number of channels, or have an enormous
computational complexity”. Our goal in this paper is to develop a

method that overcomes these limitations. We formulate the timing and

gain estimation problem as separable nonlinear least squares problem

and propose a Gauss-Newton type iteration method for its solution.

The proposed method can be applied in both blind calibration given

only a modest amount of oversampling and non-blind calibration

modes. Unlike some other methods, it is computationally efficient and

works for any number of interlaced ADCs. Simulation results show

that this method exhibits fast convergence and desirable detection

accuracy.

II. PROBLEM DESCRIPTION

We model the converter input signal � � � �
as a bandlimited

zero-mean Gaussian random process with bandwidth 	 , whose

continuous-time Fourier Transform


 � � � � 
 �
� � � �

� � � � � � � � � � � � �
(1)

is zero when � � � � 	 , where � � � � �
. Without loss of generality,

we consider 	 � �� in this paper. It is well-known that � � � �
can be

expressed as

� � � � � ��
� � � �

� �  ! � " # $ % � & � � �  ! � � '
(2)

provided that
! ( �

, cf. [12].

As explained in the introduction, instead of sending � through one

single ADC operating at rate
�� , we apply � parallel ADCs with the

same sampling rate
�� � , but with different phases, in order to achieve

an overall sampling rate of
�� , cf. also Fig. 1. However, due to the

existence of time errors and gain mismatches, for each of the ) -th

ADCs we receive a sequence of uniform samples

* + �  � � � � , - .+ � / �  � ! , � ) � � , 0 .+ � ! � ) � � ' 1 ' 2 2 2 ' �  3 4 '
(3)

where
/ � � � � � � � � , 5 � � �

,
5 � � �

is assumed to be Additive White

Gaussian Noise (AWGN). Combining all these individual uniform

sampling sets into one set results no longer in a sequence of uniformly

spaced samples, but in a sequence of periodic nonuniform samples
of the signal � � � �

.
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In order to obtain a better approximation of the output� � � � � � � � 	 
 , estimating the time error
� �
 and gain mismatch

� �
 is

necessary. Our goal is to develop estimation methods that are highly

accurate, robust, and numerically efficient.

Since we only study the dynamic performance of the � -ADC

system, it is not important whether for instance the gain for the � -th

channel is
� � � � �
 �

or � � � � � �
 �
as long as � is constant for all

ADCs. In other words, we only care about the relative difference of

gain mismatches and time errors between different ADCs. Therefore,

without lost of generality, we set
� �� � �

and
� �� � �

,
� �
 �

denotes

the timing error between the � -th sampling sequence and the first

sampling sequence and
� �
 is the gain mismatch for the � -th ADC.

III. MISMATCH DETECTION VIA SEPARABLE NONLINEAR LEAST

SQUARES

We start by considering the problem of how to approximate a

bandlimited signal well by using known samples. It is well-known

that if we reduce the time interval
�

with which we sample � then

the Fourier domain periodization of � is increased to
�� . Hence, if� � �

, i.e., if we oversample the signal, we can use a filter � � � �
with

fast decay instead of the slowly decaying sinc-function to recover � ,

cf. [13]. In this case we arrive at the following expression for �
� � � � � ��� � � �  �� � � � ! " #� � $

(4)

where
#� % & � $ � '

is the corresponding time spacing which depends on

the particular choice for � . For instance, when the Fourier transform

of � � � �
is the raised cosine we have

� � � � � #� ( ) * � + ,-� �. � / 0 ( � + 1 ,-� �� ! � 2 1 ,-� � 2 $
(5)

where 3 is the roll-off factor.

Now let 4 
 � � �
be the samples we get for

� % 5
and� � � $ 6 $ 7 7 7 $ � , concerning the time errors and gain mismatches,

we arrive at the following nonlinear least squares problem:� 8 $ 9 $ : � � ; < = > ) * ? @ A B A C D E�
 � � ��� � � � FF
4 
 � � � ! G 
 � � � FF

2 $
(6)

where
G 
 � � � � � � � � 
 � H �� � � �  � � � � � � � � 
 � � ! � � � ! " #� �

and the vectors
8

and
9

of length � ! �
are the estimations for

the time errors and gain mismatches,
8 � � � � � 
 I � ,

9 � � � � � 
 I � ,

for � � � $ 7 7 7 � ! �
since we already assumed that

� � � �
and� � � �

, and
: � " � �  � . In practice it is of course not feasible to

first collect all samples of � and then estimate the parameters
8

and
9

,

not to mention that it would be also impossible to numerically solve

an infinite-dimensional optimization problem. Therefore we need to

truncate (6) to a finite dimensional problem.

Assume J $ K
are even numbers, for given samples

� 4 
 � � � � E 
 � �
where

� � � L2 $ 7 7 7 $ L 2 ! �
, we approximate the signal � � � �

in
� %& � E L �2 $ E L �2 '

by the truncated series

� M � � � � N O�� � P NO  �� � � � ! " #� � $
(7)

where
E L �2 Q R -�2 Q E L �2 � #�

. Note that for � � ( ) * /
this series

may diverge in presence of noise when J S T . Even if it does

converge, the rate of convergence will be annoyingly slow. From

[14] we know that, unlike (2), for properly chosen � � � �
in (7) the

truncated sum will always converge. Furthermore, the truncation errorU V W � V UU V U decays very fast with respect to the number of samples (here,X 7 X
denotes the usual Euclidean norm). Thus, assuming we choose a

proper � we are concerned with the finite-dimensional optimization

problem

� 8 $ 9 $ : � � ; < = > ) * ? @ A B A C D E�
 � �
Y O � ��� � P YO FF

4 
 � � � ! #G 
 � � � FF
2 7

(8)

where
#G 
 � � � � � � � � 
 � H N O� � P NO  � � � � � 
 � � � � � ! � � � ! " #� �

.

Problem (8) is a separable nonlinear least squares problem which

was analyzed in [15]. Our approach for solving (8) is a Gauss-Newton

type method, which is introduced in the following.

Define the � J Z � K � � �
matrix [ by [ � \ $ ] � � � � � � ^ � � � � \ � � ^ !E L2 � � ! � ] ! R 2 � #� �

, where
� � � �

,
� ^ � � ^ � E when \ _ � ;

� � � �
,� ^ � � ^ � E when \ _ � ; \ � � $ 6 $ 7 7 7 $ � J and

] � � $ $ 7 7 7 $ K � �
. We

reorganize the � J samples
� 4 
 � � � � E 
 � � from time

� E L �2 to
E L �2 ,

then put them into vector ` of length � J . Now problem (8) becomes� 8 $ 9 $ : � � ; < = > ) * ? @ A B A C D X [ : ! ` X 2 7
(9)

We solve (8) by using an iterative method. We use initial values8 a b c � � � � �
and

9 a b c � � � � �
, � � � $ 6 $ 7 7 7 � ! �

. From (9), we can

get the initial value
: a b c

by solving a linear least squares problem.� : a b c � � ; < = > ) * ? C D X [ d e f : ! ` X 2 7
(10)

where [ d e f � \ $ ] � � � � � \ ! E L2 � � ! � ] ! R 2 � #� �
.

We collate the solutions
8 $ 9 $ :

of (9) in the vector g �� 8 h $ 9 h $ : h � �
and introduce the � J Z �

-vector-valued functioni � g � j � [ :
. The linearization of the nonlinear function

i
at the

exact solution g d � f is given byi � g � k i � g d � f � � l � g d � f � � g ! g d � f � $
(11)

with the Jacobian
l � g � � \ $ ] � j � m n om p q , \ � � $ 6 $ 7 7 7 � J ;

] �� $ 6 $ 7 7 7 K � 6 � ! 6
. Thus in each iteration step we solve the linear

least squares problem� g d � f � � ; < = > ) * p X i � g d � � � f � � l � g d � � � f � � g ! g d � � � f � ! ` X 2 $
(12)

with starting value g d e f � � r 8 a b c s h $ r 9 a b c s h $ r : a b c s h � �
.

Algorithm 3.1: Given the optimization problem (9), and the corre-

sponding vector function
i � g �

and matrix
l � g �

, starting at g d e f �� r 8 a b c s h $ r 9 a b c s h $ r : a b c s h � �
, we solve this problem by the follow-

ing algorithm:

1) At the
"

-th step, we solve linear least square problem� g d � f � � ; < = > ) * p X i � g d � � � f � � l � g d � � � f � � g ! g d � � � f � ! ` X 2 $
(13)

to find g d � f .

2) Let
" j � " � �

.

3) Stop if
"

is greater than
� � , otherwise go to the next step.

It is well known that the Gauss-Newton method has guaranteed

convergence, provided that
� g t X i � g � ! ` X Q X i � g d e f � ! ` X �

is

bounded and the Jacobian
l � g �

has full rank [16]. Moreover, if

the truncation error is small and the SNR is high, this method has

superlinear convergence [16].

To achieve an even better estimation of
� 8 u $ 9 u �

, we may solve

problem (8) multiple times by using v consecutively disjoint sam-

pling blocks of size � J . One natural way is to average all these

solutions, which gives the following estimatesw8 u � �v x� y � � w8 z
and

w9 u � �v x� y � � w9 z 7
(14)

Here
w9 z

and
w8 z

are the solution of (8) for the { -th data block.

III ­ 1226



Instead of using (14), we use another method which exhibits even

better performance. We simultaneously consider � data blocks as

before, but now we set up the following optimization problem:

� � � � � � � 	 
 � 
 � 
 
 � � � 
 � � � �� � � � ��� � �
� � � ��� � � �� �� � � � � �  ! � � " # $ ��

%
(15)

where � � � � is the
#

-th sampling value of the & -th ADC in the ' -th data

block,
 ! � � " # $ ( " ) * + � $ , - �. � � -� /

� . 0 � " " 1 � * # 2 * & � ) $ 3 � 4  3 $
,

usually if
5 � � and

5 � � 6 are the ideal time positions of first and the

last points in the ' -th data block, we define 0 � " 5 $ ( 0 " 5 � 7 8 9 : 7 8 ; �% $
,

vector
< �

with components
< � " 4 $ ( /

� . for ' ( ) = > > > = � and4 ( � ?% = > > > = ? % .

Let the vector @ �
contain all the samples in the ' -th data block.

Define matrix A �
by A � " B = C $ ( " ) * + D $ 0 � " " 1 D * B � � 6% $ 3 � " C �? % $  3 $

, where
+ � ( E

and
+ D ( + D � � when B F 2 ,

1 � ( E
and1 D ( 1 D � � when B F 2 for B ( ) = G > > > = 2 H and

C ( ) = G = > > > = I * )
,

problem (15) becomes:

J K = L = < M = > > > = < N O ( � � � � � � � 	 
 � 
 � 
 � � � 
 � � � �� � � � P A � < Q � @ � P % >
(16)

Before we proceed, we introduce some notation. In the ' -th data

block, let
R � " S $ ( A � < Q , and define the 2 H T " 2 � ) $

matrices U �
andV �

via U � " B = C $ ( W X 8 YW Z [ and
V � " B = C $ ( W X 8 YW \ [ for

C ( ) = > > > = 2 � )
.

Then the 2 H T " I * ) $
matrix A �

has components A � " B = C $ ( W X 8 YW � 8 [
for

C ( ) = > > > = I * )
.

In order to solve the nonlinear least squares problem (16), we

use the same linearization as in (11) for different data blocks, and

make
 S � ( " ]K Q ^ = ]L Q ^ = ]< Q ^ $ ^

the initial value, which is the solution

from the iteration method (12) in ' -th data block. By using the

approximation in (11), we arrive at the following problem

� � � � � � � 	 
 � 
 � 
 
 � � � 
 � � � �� � � � P R � "  S � $ * _ � "  S � $ " S � �  S � $ � @ � P % =
(17)

where
_ � " S $ " B = C $ ` ( W X 8 YW a [ and S � ( " K ^ = L ^ = < Q ^ $ ^

. Actually from

the definitions above we have_ � " S $ ( b U � = V � = A � c >
(18)

In problem (17), if
K

and
L

are given, the
< Q can be determined by

solving the linear least squares problem
J < Q O ( � � � � � � � d P R � "  S � $ *_ � "  S � $ " S � �  S � $ � @ � P %

. Since we are only interested in the solution

of
K

and
L

in (17), we formulate our problem as:

J K = L O ( � � � � � � � 	 
 � � � � � � � � � � 
 
 � � � 
 � � � �� � � � P R � "  S � $ *
U � " K �  K � $ * V � " L �  L � $ * A � "  S � $ " < Q �  < � $ � @ � P %

Let e � ( b U � = V � c � f g 8 " b U � = V � c $
, where

f g 8 is the orthogonal

projection to space A �
. We have� � � � � 
 
 � � � 
 � � � �� � � � P R � "  S � $ * U � " K �  K � $* V � " L �  L � $ * A � "  S � $ " < Q �  < � $ � @ � P %( �� � � � � � �� � d � P R � "  S � $* U � " K �  K � $ * V � " L �  L � $ * A � "  S � $ " < Q �  < � $ � @ � P %( �� � � � P e � h K �  K �

L �  L � i * @ � � R � "  S � $ � f g 8 " @ �
� R � "  S � $ $ P %( �� � � � P e � j KL k � l � P %

where
l � ( R � "  S � $ * f g 8 " @ � * R � "  S � $ $ � @ � * e � " "  K � $ ^ = "  L � $ ^ $ ^

.

Thus problem (17) becomesJ K = L O ( � � � � � � � 	 
 � � �� � � � P e � j KL k � l � P % >
(19)

Let e ( , �
� � � e ^� e �

and
l ( , �

� � � e ^� l �
, the solution of problem

(19) is given by
" e $ � � l

.

As we said before the simulation results by using (19) show better

performance than by using (14). One intuitive explanation is that in

(19), the essential solution depends on the matrix e , which reflects

the condition of the resulting matrix e �
in all data blocks, while in

(14), the final results depend on the condition of the resulting matrix

individually.

By solving (19) we arrive at our final estimation for the time errors

and gain mismatches.

Algorithm 3.2: Given an 2 -ADC system, if in each ' -th data block

the resulting matrix e �
has full rank, we have the following algorithm

for estimating the timing errors and gain mismatches:

Let e be the
" G 2 � G $ T " G 2 � G $

zero-matrix and
l

be a zero

vector of length
G 2 � G

.

1) For the ' -th data block, we first solve (9) by using algorithm

3.1, then we compute the matrix e �
and the vector

l �
in (19).

2) Let e ` ( e * e ^� e �
and

l ` ( l * e ^� l �
.

3) Finally we obtain the estimates for the timing and gain mis-

match by solving j KL k ( " e $ � � l >
(20)

In our simulations we found that a good choice for
# � is

# � ( m
in algorithm 3.1. And we typically set the total number of data

blocks � about 20.

The details for the convergence analysis of Algorithm 3.2 is given

in [17]. Fast Fourier Transform (FFT)-based multiplication and the

conjugate gradient (CG) method [18] are applied to both algorithm

3.1 and algorithm 3.2. The details are introduced in [17].

IV. SIMULATIONS AND ANALYSIS

Several experiments have been done in 4-ADC and 16-ADC

systems to demonstrate the efficiency of our algorithm.

Example 4.1: We consider a 4-ADC system, the input signal con-

sists of multiple sinusoids with frequencies
E > n = E > � G = E > �

and
E > � m

.

The sampling rate is 1.4. The time errors and gain mismatches are

uniformly distributed in
b � E > ) 3 = E > ) 3 c

and
b � E > ) = E > ) c

respectively.

The number of samples in each data block is 160 and we use a total
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of 20 data blocks in each experiment. Each experiment is repeated 50

times and the average time mismatches estimation errors are shown

in fig. 2.

As expected, the estimation error decreases with increasing SNR.
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Fig. 2. Estimation errors for a 4-ADC system with blind calibration

For each SNR, our method can reach an estimation with an error

which is much less than NSR. As we can see in fig. 2, the estimation

errors converge very fast. In general, we can achieve a very small

estimation error with only a few thousand samples. The numerical

results for the detection error of gain mismatches are similar.

Since our method can achieve a very small estimation error as

shown in the last example, the SNR of output signal is expected to

be very close or higher than the SNR of input signal provided some

oversampling.

Example 4.2: We consider a 16-ADC system. The input signal is

bandlimited WGN with bandwidth � � � � �
, sampling rate is 1.8.

The time errors and gain mismatches are uniformly distributed in� � � � � 	 
 � � � 	 �
and

� � � � � 
 � � � �
respectively. The number of samples

in each data block is 240 and we use a total of 40 data blocks in

each experiment. We first estimate the mismatch errors, after that we

apply the interpolation method introduced in [14] to get the output

signal. The SNR is computed for the output signal. We did the same

experiment 100 times and the average SNRs are shown in fig. 3.
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Fig. 3. SNR of output signal with blind calibration in 16-ADC systems

For the 16-ADC system, the SNR of the output signal is larger than

the SNR of the input signal when the input SNR is between 50dB

and 80dB with the given timing errors up to 10% of the sampling

space and gain mismatches up to 0.1.

V. CONCLUSION

We have modeled the mismatch errors detection problem for time-

interleaved ADCs as a nonlinear separable least squares problem,

and proposed a Gauss-Newton type method to find the solution.

Simulation results show that our approach converges very fast and

the resulting SNR of output signal is shown to be higher than the

SNR of input signal in a 16-ADC system.
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