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ABSTRACT 

In this paper, a multi-model Rao-Blackwellised Particle Filter 
algorithm is presented for tracking high maneuvering target in 
distributed acoustic sensor networks. It is more efficient for high-
dimension nonlinear and non-Gaussian estimation problems than 
generic particle filter, and by stratified particles sampling from a 
set of system models, it can tackle the target’s maneuver perfectly. 
In the simulation comparison, a high maneuvering target moves 
through an acoustic sensor network field. The target is tracked 
using both the RBPF and the multi-model RBPF algorithms, and a 
location-central protocol is applied for energy conservation. The 
results show that our approach has great performance 
improvements, especially when the target is making maneuver. 

Index Terms— Particle filter, RBPF, Maneuvering 
target, Multi-model, sensor networks

1. INTRODUCTION 

Target tracking is emerging as one of the new attractive 
applications in large-scale wireless sensor networks(WSN) such as 
wild animal habit monitoring and intruder surveillance in military 
regions. For many practical target tracking problems, the target 
motion models are uncertain and the observations are incomplete, 
and the state equation or the measurement equation is nonlinearly 
modeled. Additionally, the system noises are also maybe non-
Gaussian. There have been many suboptimal methods for these 
nonlinear problems. The classical method is extending the standard 
Kalman filter(KF) to nonlinear system by local linearizing all 
nonlinear models around certain points, which is so called 
extended Kalman filter(EKF)[1]. In 1995, Julier and Uhlmann 
proposed a new algorithm called Unscented Kalman filter(UKF)[2]. 
Particle filter(PF) algorithm is now a popular and useful method 
for nonlinear and non-Gaussian estimation problems[3]. The PF 
uses a set of random samples with associated weights to represent 
the required posterior density function(PDF) and computes state 
estimates based on these samples and weights. However, when 
applied to a high dimensional state space, the computation burden 
may explode and the estimation accuracy may deteriorate rapidly. 
An effective method to solving this problem is using the Rao-
Blackwell theorem[4] to reduce the dimension of the state vector 
that needs to be estimated by nonlinear method. Based on this 
theorem, Arnaud Doucet and Simon Godsill proposed the Rao-
Blackwellised Particle Filter(RBPF) algorithm which is also called 
marginalized particle filter in other papers[5][6]. 

The main predominance of the PF and RBPF algorithms is 
being able to handle any functional nonlinearity and any 
distribution of system noise or measurement noise. But the highly 
uncertainty and incompleteness of the measurement information in 
maneuvering target tracking application largely weaken this 
predominance. The difficulty mainly lies on the fact that the 
observation at a single step is always of highly uncertainties and 
incomplete to some extent and the valid information in single step 
is not enough for calculating an effective estimate of the target 
state. The predefined target model will misses match with the true 
target motion mode when the target is maneuvering, so it is most 
difficult to detect the maneuver efficiently and adjust the target 
model quickly. In order to tackle these kind of problems, here we 
propose a multi-model RBPF algorithm(we will call it MRBPF for 
simplification below) in the scenario of target tracking in acoustic 
sensor networks and the sensory information used for tracking are 
the acoustic energies. The proposed RBPF algorithm draws valid 
information from successive observations. First, we should choose 
a set of possible target motion models and associated initial model 
probabilities. Then we use stratified sampling theory[7] and 
successive observations to adjust the model probabilities and the 
particles distribution among these models. When modifying the 
PDF of the system modes with the observations of next time step, 
the maneuverability is settled and better performance is achieved.  

The remainder of this paper is organized as follows. In the 
next section we will introduce the maneuvering target tracking 
problem in acoustic WSN. In section 3, the new multi-model 
RBPF algorithm is presented. Section 4 is the simulation 
experiment to evaluate the performance of our algorithm. Finally, 
a conclusion is given in section 5.

2. PROBLEM FORMULATION 

2.1. Measurement Model

In this paper, we focus on the target tracking task using acoustic 
sensors(microphones) in wireless ad hoc sensor networks. Existing 
acoustic source localization or tracking methods make use of three 
types of physical measurements: time delay of arrival(TDOA), 
direction of arrival(DOA) and source signal strength or energy. In 
practice, energy based acoustic features is an appropriate choice 
for WSN passive target tracking applications because of the 
shortages of sensing, communication, energy and computation 
ability in sensor networks[8]. It is known that most of the sensor 
energy is consumed at the wireless communication module. The 
acoustic energy is computed as the moving average of the squared 
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magnitude of the acoustic time series, so the acoustic energy time 
series can be sampled at a much lower rate compared to the raw 
acoustic time series and the communication module awakening 
frequency can be reduced which means the retrenchment of sensor 
energy.  

Assuming there are K  targets and N  acoustic sensors in a 

sensor field. The energy received by the thi  sensor is the sum of 
the decayed energy emitted from each of these K targets. Ideally, 

the acoustic energy measured on the thi  sensor at time step t  can 
be expressed as follows: 

1

( )
( ) ( )

( )

K
k ki

i i i
k k ki i

s t t
y t g v t

r t t r α
=

−
= +

− −
(1)

   
Where ( )ks t  is a scalar denoting the energy emitted by the 

thk  target during the energy sampling period, ( )ks t  can be 

assumed varying very slowly during the run of the thk  target. kit

is the time delay for the sound signal propagates from the thk
target to the thi  sensor. ( )kr t  is a vector denoting the coordinates 

of the thk  target at the time step t . ir  is a vector denoting the 

coordinates of the thi  sensor. ig  is the energy gain factor of the 
thi  sensor. α  is an energy decay factor whose value can be 

measured during sensor calibration. ( )iv t  is the cumulative effects 
of the modeling error of above-mentioned parameters and addition 
observation noise of ( )iy t , ( )iv t  can be approximated very well 
with a normal distribution. 

2.2. Target Motion Model 

For the ground maneuvering target tracking applications in a 2D 
sensor field, the target’s state vector can be expressed as follows: 

( )T

t t t t tx ξ η ξ η= (2)

Where ,t tξ η denote the target positions and ,t tξ η denote the 
velocities in x and y axes respectively. In section 2.1, we have 
mentioned that the emitted acoustic power ( )ks t  of thk  target 
varies very slowly, but it is not suitable to consider it as a constant 
during a long time. So we introduce ( )ks t  into the target state 
vector, and equation (2) can be modified as: 

( )T

t t t t t tx sξ η ξ η= (3)
For linear case, the maneuvering target dynamic can be 

expressed by:  

1t t t t tx F x G w+ = + (4)
Where tF  is state transition matrix, and tG  is noise matrix. 

tF  and tG  are defined according to available priori knowledge 
such as the target type or terrain information. More models may 
tackle the true target motion mode better, but also will result in 
more complicated computation. In this paper, we assume that the 
target is making a double-turn maneuver. The state transition 
matrix is given by: 

1) Constant velocity(CV) model, 

1 0 0 0
0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

t

T
T

F = (5)

2) First coordinated turn model, 
1 0 sin( ) ( cos( ) 1) 0
0 1 (1 cos( )) sin( ) 0
0 0 cos( ) sin( ) 0
0 0 sin( ) cos( ) 0
0 0 0 0 1

t
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ω ω ω
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−
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= −

(6)
3) Second coordinated turn model,  

1 0 sin( ) ( cos( ) 1) 0
0 1 (1 cos( )) sin( ) 0
0 0 cos( ) sin( ) 0
0 0 sin( ) cos( ) 0
0 0 0 0 1

t

T T
T T
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−
−

= −
−

(7)
Here ω  denotes the turn rate in radians per second. 

3. MULTI-MODEL RAO-BLACKWELLISED PARTICLE 
FILTER

The RBPF is a clever combination of generic PF and standard  
Kalman filter, which can be used when the system model contains 
a linear substructure, subject to Gaussian noise. The RBPF is 
implicitly suitable for most of target tracking problems which have 
linear dynamic with a nonlinear measurement relation. 

Using the notation p
tx  for the states that are estimated using 

the PF and k
tx  for the states that are estimated using the KF, the 

system dynamic described in section 2 can be partitioned as:
1

1
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(8)

The total target state vector is ( )p k T
t t tx x x= . All noise 

signals are considered white and independent. The generic RBPF 
algorithm is summarized in [7]. From equation (1) we know that 
the measurement equation is only the function of targets’s 
positions and the acoustic power, so we select the state-vector 

partition as ( )Tp
t t t tx sξ η=  and ( )Tk

t t tx ξ η= . The dimension 

of state vector estimated by PF is reduced to 3, this is considerable 
when there are several targets or the number of particles used in 
algorithm is very large. 

The target may do many types of maneuvers which are 
unobservable when passing the sensor field. Here we propose a 
multi-model Rao-Blackwellised particle filter(MRBPF), which 
samples particles from several models belonging to a system 
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model set and mixes the result of each model. The model 
probabilities are also updated simultaneously.

Now, we redefine the system dynamic of this form: 

1 ( , , )j
t t t tx f x wμ+ = (9a)

( , , )j
t t t ty h x vμ= (9b)

Where j
t sMμ ∈  denotes that model j

tμ  is in effect at time 

step t, sM  is the mode space. sN  is the number of models in sM .
The mode transition is defined by a first homogeneous Markov 
chain[9],   

{ }1 | , ,j i
ij t t ij sP p i j Nμ μ+ = ∀ ∈ (10)

Where ijp  is the Markov transition probability from model i
to model j .

For maneuvering target tracking, a crucial problem is to 
estimate the system model j

tμ , when applying the PF for system 
state estimation, it is natural to combine the model transition 
probabilities with distribution of particles which represents the 
PDF of the system state. The proposed MDRBPF algorithm is 
summarized in Table 1. 

Table 1. The proposed MDRBPF algorithm 
1. Initialization: 

 Let time step t=0, For 1, ,i N= ( N  is the number of 

particles used), 
0

,( )
0| 1 0( )p
p i p

x
x p x−  , and set 

{ } { },( )
000| 1 0| 1, ,

kk i ix P x P− − = ; For 1, , sk N= , set the initial 

model probability 0 0( | ) ( )k
kp pμ μ= .

2. Prediction step: 

a) For 1, ,i N= , compute * ,( ) * ,( )
1 ( , , )p i p i i

t t t tx f x wμ+ = ,

where i
tμ  is a sample drawn from the system model set 

sM  with distribution { }
1, ,

( | )
s

j
t t j N

p μ
=

 and tw  is a 

sample drawn from the known noise PDF.  

Then, for 1, , sk N= , compute ( | )k
t

k
t tN N pμ μ= ⋅

and { }* ,( ) * ,( )
1 1

p k p k
t tx E x+ += , where k

t
Nμ

 is the number of 

particles drawn from model k
tμ .

b) For 1, , sk N= , compute the posterior model 

probabilities  
* ,( )

11 11
( | ) ( | )jk jt

p kN kk
tt t t tj

p p y x Cμμ γ++ +=
= ,

where C  is the normalizing factor.  

c) Using the posterior model probabilities to predict the 
particles again. Namely, ,( ) ,( )

1| |( , , )p i p i i
t t t t t tx f x wμ+ = , i

tμ  is 

sampled with distribution { }1 1, ,
( | )

s

j
t t j N

p μ + =
.

d) The KF measurement update step. 

3. For 1, ,i N= , Compute the importance weights 
( ) ,( )

1 1 1|( | , )
i p i

t t t t tp y xγ + + += . ,( )
1 1|( | , )p i

t t t tp y x+ +  is chosen as  

likelihood function. Normalize 
( )

1
i

tγ +  by 
( ) ( )( )

1 11 1

i iNi
t tt i

γ γ γ+ ++ =
= .

4. For 1, , sk N= , update the probability of the system 
model at time step t+1, 

1 1 1 11

11

( | ) ( | ) ( | )

( | )

s

s

Nk k j j
t t t t t tj

N k
jk t tj

p p p

p p

μ μ μ μ

μ

+ + + +=

+=

∝

=
, and then 

normalize these probabilities. 

5. Resampling step: Using the importance weights in step 3 
to generate N  new particles, according to, 

,( ) ,( ) ( )
1| 1 1| 1Prob( )p i p j j

t t t t tx x γ+ + + += =

6. The KF time update step 

7. Increase t  and return to step 2.

4. SIMULATION RESULTS 

We have developed a simulation platform for ground target 
tracking in WSN which is shown in Fig. 1.  

Fig. 1.  The simulation platform for target tracking in wireless 
sensor networks 

In the simulation, we assume that a vehicle moves across the 
randomly deployed sensor field as shown in Fig. 1. The detection 
range of each sensor is 150m. The target’s initial state vector is 
(550, 100, 5, 5)T  and the entire target moving time is 100s. 
Assume the target makes a double turn maneuver, the turn rate is 
45 /s in the first turn and  22.5 /s in the second turn. During 
other time the target moves with approximately constant velocities. 

In the simulation, the target number is 1, so equation (7) can 
be simplified as follows:

1( )
( ) ( )

( )
i

i i i

i

s t t
y t g v t

r t r α

−
= +

−
(11)

We have carried out some preliminary experiments and the 
average of α  is calculated: 2.0929α ≈ . Value of α  may have 
a little difference when in different environments. The results 
validate the hypothesis that the acoustic energy decreases 
approximately as the inverse of the square of the distance between 
the source and the sensor. 
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Because the sensor energy is very short, here we adopt a 
location-central protocol for energy saving and prolonging the 
lifetime of the whole sensor network. In this protocol, the chosen 
sensors which are responsible for tracking are four sensors which 
are nearest to the predicted target position at the current time step, 
simultaneity a processing header is created among these four 
sensors by appropriate strategy. The processing header is 
responsible for collecting the information of other three sensors, 
executing the target tracking algorithm and sending the results to 
the sink. 

The target is tracked by both RBPF algorithm using the first 
target model and our proposed algorithm, and we use 100MCN =
Monte Carlo simulations for each algorithm. The results in form of 
the position root of mean square error(RMSE) are given in Table 2. 
The unit of the quantities is meter. 

Table 2. RMSE for 100 Monte Carlo runs 

Algorithms RBPF MRBPF 

RMSE 59.0321 9.4187 

In Fig. 2, we also give the RMSE for each time step of 
different algorithms, , according to the following equation: 

2 2
1

1( ) (( ) ( ) )MC
j jN true true
k kk kj

MC

RMSE t
N

ξ ξ η η
=

= − + − (12)

where
j

kξ ,
j

kη  are the filter position estimations at time step 

k  in Monte Carlo run i . true
kξ , true

kη  are the true position at time 

step k .
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Fig. 2.  The comparison of RMSE(t) for the RBPF and MDRBPF 
algorithms 

Fig. 3 is the results extracted from one Monte Carlo run. From 
the simulation results we know that the performance of the RBPF 
is better than our algorithm when the target are moving with a 
constant velocity, because here all of the RBPF’s particles match 
the true motion model very well. But when the target performs 
high maneuver, the RBPF could not keep up with the target and 
need to initialize itself to a proper state again, whereas the 
MDRBPF can tackle the maneuverability well. 
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Fig. 3.  The true and estimated trajectory of the RBPF and 
MDRBPF algorithms in one Monte Carlo run 

5. CONCLUSION 

In this paper, we have briefly described the characteristics of 
maneuvering target tracking in acoustic sensor networks. We use 
acoustic energy as the feature information for tracking and a new 
multi-model Rao-Blackwellised particle filter is proposed. 
Compared with RBPF in simulation, the RMSE of the proposed 
method on maneuvering part of the tracking process has been 
shown to be markedly improved. 
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