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ABSTRACT

This paper addresses the problem of hyperspectral image unmixing.
A new hierarchical Bayesian algorithm is proposed to estimate the
coef cients of a linear mixture of spectra associated to a given pixel
of the image. Appropriate priors are introduced to guaranty the posi-
tivity and additivity constraints inherent to the mixture coef cients.
These coef cients referred to as abundances are then estimated from
their posterior following the principles of Bayesian inference. The
estimation is performed by using a Gibbs sampling strategy which
generates samples distributed according the abundance posterior dis-
tribution. These samples are then averaged yielding the abundance
minimum mean square error estimator.

Index Terms— Bayesian inference, Monte Carlo methods, spec-
tral unmixing, hyperspectral images.

1. INTRODUCTION

Observing a given scene in different wavelength intervals is a clas-
sical way of obtaining high quality images. These images include
multispectral and hyperspectral images. The pixels of hyperspectral
images result from the mixture of different pure materials called end-
members. Hyperspectral sensors provide a spectrum for each pixel
of the image. The unmixing problem consist of decomposing the
spectrum associated to a given pixel as a mixture of spectra associ-
ated to different endmembers and to estimate the coef cients of this
mixture usually referred to as abundances. The unmixing problem
has received much attention in the literature (see for instance [1] for
a recent review on this problem and references therein) and is classi-
cally divided into three steps 1) dimension reduction, 2) endmember
determination and 3) inversion. This paper concentrates on the in-
version step which is fundamental in any unmixing algorithm.

The dif culty of the inversion problem is mainly due to the ad-
ditivity and positivity constraints that the abundances have to satisfy.
A lot of inversion methods which have been studied in the literature
have been formulated as constrained least squares problems [2, 3].
The idea of these methods is to estimate the abundances by mini-
mizing the usual least-squares error, by constraining the solutions to
satisfy appropriate additivity and positivity constraints. This paper
proposes a new approach which de nes prior distributions for the
abundances which satisfy the positivity and additivity constraints.
This results in a hierarchical Bayesian algorithm for unmixing hy-
perspectral images. The proposed algorithm allows us to derive the
a posteriori distribution of the abundances, which can be used to es-
timate these parameters by means of the minimummean square error
(MMSE) or maximum a posteriori (MAP) estimators. However, the
posterior distribution of the abundances is also interesting to derive
con dence intervals or theoretical variances for these parameters.

The paper is organized as follows. The linear mixing model
used for hyperspectral images is presented in Section 2. Section 3
describes the different elements of the hierarchical model used to
address the unmixing problem. Section 4 studies a Gibbs sampler
which allows one to generate samples distributed according to the
abundance posterior distribution. Some simulation results on syn-
thetic and real data are presented in Sections 5 and 6. Conclusions
are reported in Section 7.

2. LINEAR MIXINGMODEL
This section de nes the classical analytical model which will be
used to perform spectral unmixing. Non-linear mixing has already
received some attention in the literature. However, there are seve-
ral obstacles for implementing nonlinear models (the reader is in-
vited to consult [1] for more details). This paper concentrates on the
most commonly used linear unmixing problem which constitutes a
good approximation in the re ective domain ranging from 0.4μm to
2.5μm (see [1, 4] or more recently [5]). The linear mixing model
(LMM) assumes that the L-spectrum y = [y1, . . . , yL]T of a mixed
pixel is a linear combination of R spectra mr contaminated by ad-
ditive white noise:

y =

R∑
r=1

mrαr + n, (1)

where mr = [mr,1, . . . ,mr,L]T denotes the spectrum of the rth
material, αr is the fraction of the rth material in the pixel (or rth
abundance), R is the number of pure materials (or endmembers)
present in all the observed scene, L is the number of available spec-
tral bands for the image and n = [n1, . . . , nL]T is the additive white
noise sequence. The noise sequence is classically assumed to be an
independent and identically distributed (i.i.d.) zero-mean Gaussian
sequence with variance σ2, denoted as n ∼ N (0L, σ

2IL), where
IL is the identity matrix of dimension L × L. Due to physical con-
siderations, the fraction vector α+ = [α1, . . . , αR]T satis es the
following positivity and additivity constraints:{

αr ≥ 0, ∀r = 1, . . . , R,∑R

r=1
αr = 1.

(2)

The R endmembers spectramr are assumed to be known in this pa-
per. As a consequence, the proposed methodology has to be coupled
with one of the many identi cation techniques to estimate endmem-
ber spectra. These techniques include geometrical methods [6, 7] or
statistical procedures [8, 9].

3. HIERARCHICAL BAYESIANMODEL
This section introduces a hierarchical Bayesian model to estimate
the unknown parameter vector α under the constraints speci ed in
Eq. (2). This model is based on the likelihood of the observations
and on prior distributions for the unknown parameters.
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3.1. Likelihood

The LMMde ned in Eq. (1) and the statistical properties of the noise
vectorn yieldy ∼ N (M+α+, σ2IL), whereM+ = [m1, . . . ,mR]
and α+ = [α1, . . . , αR]T. Consequently, the likelihood function of
y can be expressed as:

f(y|α+
, σ

2) =

(
1

2πσ2

)L
2

exp

[
−

∥∥y −M+α+
∥∥2

2σ2

]
, (3)

where ‖x‖2 = xTx is the standard L2 norm.

3.2. Parameter priors

The abundance vector can be decomposed as α+ = [αT, αR]T,
where α = [α1, . . . , αR−1]

T and αR = 1 −
∑R−1

r=1
αr. A trun-

cated multivariate normal distribution is chosen as prior distribution
for α:

α ∼ NS(0R−1, σ
2
0IR−1), (4)

where

S =

{
α

∣∣∣∣∣αr ≥ 0, ∀r = 1, . . . , R − 1,

R−1∑
r=1

αr ≤ 1

}
, (5)

NS(θ,Σ) denotes the multivariate normal distribution with mean
vector θ and covariance matrix Σ truncated to the domain S, and
0R−1 is the vector made of R − 1 zeros. The probability density
function (pdf) of this truncated multivariate normal distribution de-
noted as φS (·|θ,Σ) satis es the following relation:

φS (x|θ,Σ) ∝ φ(x|θ,Σ)1S(x), (6)

where φ(·|θ,Σ) is the standard Gaussian pdf with mean vector θ

and covariance matrix Σ, 1S(.) is the indicator function de ned on
S and the symbol ∝means “proportional to”. Note that the pdf φS is
parametrized by the adjustable hyperparameter σ2

0 .
A non-informative conjugate prior is chosen for σ2:

σ
2 ∼ IG

( ν
2
,
γ

2

)
, (7)

where IG
(

ν

2
, γ

2

)
denotes the inverse-gamma distribution with para-

meters ν
2
and γ

2
. The hyperparameter ν will be xed to ν = 2 (as in

[10]) whereas γ is an adjustable hyperparameter.

3.3. Hyperparameter priors

The hyperparameter vector associated to the parameter priors de-
ned above isΦ =

{
γ, σ2

0

}
. Of course, the quality of the unmixing

procedure depends on the values of these hyperparameters. The hie-
rarchical bayesian approach developed in this paper requires to de-
ne hyperparameter priors that are detailed in this section. The pri-
ors for γ and σ2

0 are a non-informative Jeffrey’s prior and a conjugate
inverse-gamma distribution respectively:

f (γ) =
1

γ
1R+(γ), σ

2
0 ∼ IG

(
ρ

2
,
ψ

2

)
. (8)

The values of parameters ρ and ψ will be adjusted in order to provide
a “vague” prior, re ecting the lack of knowledge regarding σ2

0 . As-
suming the independence between the individual hyperparameters,
the full hyperparameter prior distributionΦ can be written:

f (Φ) ∝
1

γ

(
1

σ2
0

) ρ
2
+1

exp

[
−

ψ

2σ2
0

]
1R+(γ). (9)

3.4. Posterior distribution of θ

The posterior distribution of the unknown parameter vector θ ={
α, σ2

}
can be computed from the following hierarchical structure:

f(θ|y) =

∫
f(θ,Φ|y)dΦ ∝

∫
f(y|θ)f(θ|Φ)f(Φ)dΦ, (10)

where f (y, θ) and f (Φ) are de ned in Eq.’s (3) and (9) respec-
tively. Moreover, by assuming the independence between σ2 and α,
the following result can be obtained:

f (θ|Φ) = f(α|σ2
0)f(σ2|ν, γ). (11)

This hierarchical structure allows one to integrate out the hyperpara-
meter γ. In addition, by using the approximation [11]:

KS

(
σ

2
0

)
�

∫
S

exp

[
−
‖α‖2

2σ2
0

]
dα ≈

1

(R− 1)!
, (12)

the hyperparameter σ2
0 can also be integrated out from the joint dis-

tribution f (θ,Φ|y), yielding the approximated posterior:

f
(
α, σ

2|y
)
∝

(
1

σ2

)L
2

+1

exp

[
−

∥∥y −M+α+
∥∥2

2σ2

]

×
[
ψ + ‖α‖2

]
−

ρ
2 1S(α).

(13)

The next section shows that an appropriate Gibbs sampling strategy
allows one to generate samples distributed according to the joint dis-
tribution f(α, σ2|y).

4. A GIBBS SAMPLER FOR ABUNDANCE ESTIMATION

Sampling according to f(α, σ2|y) can be achieved by a Gibbs sam-
pler whose steps are detailed in Subsections 4.1 and 4.2.

4.1. Generation of samples distributed according to f(α|σ2,y)

To sample according to f(α|σ2,y), it is very convenient to generate
samples distributed according to f(α, σ2

0 |σ
2,y) by using the fol-

lowing procedures.
• Generation of samples according to f(σ2

0 |α, σ
2,y): The poste-

rior distribution of σ2
0 conditioned upon

(
α, σ2,y

)
expresses as:

f
(
σ

2
0 |α, σ

2
y
)
∝

1

KS (σ2
0)

(
1

σ2
0

) ρ
2
+1

exp

[
−
ψ + ‖α‖2

2σ2
0

]
.

Using the approximation in Eq. (12), the following result is obtained:

σ
2
0 |α, σ

2
,y ∼ IG

(
ρ

2
,
ψ + ‖α‖2

2

)
. (14)

• Generation of samples according to f(α|σ2
0 , σ

2,y): By deno-
tingM = [m1, . . .mR−1], straightforward computations yield:

f
(
α|σ2

0 , σ
2
,y

)
∝ exp

[
−

(α − μ)T
Λ−1 (α − μ)

2

]
1S(α),

(15)where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Λ =

[
1

σ2

(
M−mRu

T

)
T
(
M−mRu

T

)
+

1

σ2
0

IR−1

]
−1

,

μ = Λ

[
1

σ2

(
M−mRu

T

)T

(y −mR)

]
,

(16)
with u = [1, . . . , 1]T ∈ R

R−1. As a consequence, α|σ2
0 , σ

2,y is
distributed according to a truncated Gaussian distribution:

α|σ2
0 , σ

2
,y ∼ NS (μ,Λ) . (17)

The generation of α|σ2
0 , σ

2,y is achieved using a standard accept-
reject procedure.
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4.2. Generation of samples distributed according to f(σ2|α,y)

Looking carefully at the joint distribution f(σ2,α|y), the condi-
tional distribution of σ2|α,y is the following inverse gamma distri-
bution:

σ
2|α,y ∼ IG

(
L

2
,

∥∥y −M+α+
∥∥2

2

)
. (18)

5. SIMULATION RESULTS ON SYNTHETIC DATA

The accuracy of the proposed abundance estimation procedure is rst
illustrated by unmixing a synthetic pixel resulting from the combi-
nation of three pure components. These components have been ex-
tracted from the spectral libraries that are distributed with the ENVI
software [12, p.1035] and are representative of a urban or suburban
environment: construction concrete, green grass and dark yellowish
brown micaceous loam. The proportions of these components are
α1 = 0.3, α2 = 0.6 and α3 = 0.1, respectively. The observa-
tions have been corrupted by an additive Gaussian noise with vari-
ance σ2 = 0.025 (the corresponding signal to noise ratio is about
SNR = 15dB). The endmember spectra and the resulting spectrum
of the mixed pixel are plotted in Fig. 1.

0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

R
ef

le
ct

an
ce

0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Wavelength (μm)

R
ef

le
ct

an
ce

Fig. 1. Top: endmember spectra: construction concrete (solid line),
green grass (dashed line), dark yellowish brown micaceous loam
(dotted line). Bottom: resulting spectrum of the mixed pixel.

The values of parameters ρ and ψ have been chosen as ρ = 4 and
ψ = 100, yielding a vague prior for σ2

0 . Fig. 2 shows the marginal
posterior distributions of the abundance coef cients αr (r = 1, 2, 3)
obtained forNMC = 20000 iterations (includingNbi = 100 burn-in
iterations). These distributions are in good agreement with the actual
values of α+ = [0.3, 0.6, 0.1]T .
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Fig. 2. Posterior distributions of the estimated abundances
[α1, α2, α3]

T.

6. SPECTRAL UNMIXING OF AN AVIRIS IMAGE

To evaluate the performance of the proposed algorithm for actual
data, this section presents the analysis of an hyperspectral image
that has received much attention in the remote sensing and image
processing communities [13–15]. The image depicted in Fig. 3 has
224 spectral bands, a nominal bandwidth of 10nm, and was ac-
quired in 1997 by the Airborne Visible Infrared Imaging Spectrome-
ter (AVIRIS) over Moffett Field, at the southern end of the San Fran-
cisco Bay, California (see [16] for more details). It consists of a large
water point (a part of a lake that appears in dark pixel at the top of
the image) and a coastal area composed of vegetation and soil. The
data set has been reduced from the original 224 bands to L = 189
bands by removing water absorption bands. A 50 × 50 part of the
image represented in gray scale at wavelength λ = 0.66μm (band
30) has been processed by the proposed unmixing algorithm.

Fig. 3. Real hyperspectral data: Moffett Field acquired by AVIRIS
in 1997 (left) and the region of interest at wavelength λ = 0.66μm
shown in gray scale (right).

6.1. Endmember determination

The rst step of the analysis identi es the pure materials that are
present in the scene. Note that a preliminary knowledge of the ground
geology would allow us to use a supervised method for endmember
extraction (eg. by averaging the pixel spectra on appropriate regions
of interest). Such data being not available, a fully automatic pro-
cedure has been implemented. This procedure includes a principal
component analysis (PCA) which allows one to reduce the dimen-
sionality of the data and to know the number of endmembers present
in the scene as explained in [1]. After computing the cumulative
normalized eigenvalues, the data have been projected on the two
rst principal axes (associated to the two larger eigenvalues). The
vertices of the simplex de ned by the centered-whitened data in the
new 2 dimensional space are determined by the N-FINDR algorithm
[7]. The R = 3 resulting endmember spectra corresponding to ve-
getation, water and soil are plotted in Fig. 4 (top).

6.2. Abundance estimation

The Bayesian unmixing algorithm de ned in Sections 3 and 4 has
been applied on each pixel of the hyperspectral image (using the
endmember spectra identi ed by the PCA step). The image fraction
maps for the R = 3 pure materials are represented in Fig. 4 (bot-
tom). Note that a white (resp. black) pixel in the map indicates a
large (resp. small) value of the abundance coef cient. Note also that
the estimates have been obtained by averaging the last Nr = 800
simulated samples for each pixel, according to the MMSE principle.
The lake area (represented by white pixels in the water fraction map
and by black pixels in the other maps) can be clearly recovered.
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Endmember n°1: vegetation
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Fig. 4. Top: theR = 3 endmember spectra obtained by the N-FINDR algorithm. Bottom: the fraction maps of the corresponding endmember
in the scene (black (resp. white) means absence (resp. presence) of the material)

7. CONCLUSIONS

This paper studied a hierarchial Bayesian model for hyperspectral
image unmixing. This model provided the posterior distribution of
the mixing coef cients (or abundances) which was used for parame-
ter estimation. It is interesting to note that the abundance posterior
distribution could also be used to provide information on the signi-
cance of the optimally determined parameters such as con dence
intervals or theoretical variances. This is the main advantage of the
proposed algorithm compared to other approaches. Note also that
the algorithm developed in this paper assumed that the number of
abundances de ning the mixture was known and that the endmem-
bers were belonging to a known dictionary. Future works include
the development of Markov chain Monte Carlo methods allowing to
remove these hypotheses. A performance comparison between the
proposed hierarchical Bayesian methodology and constraint least-
squares techniques is also under investigation.
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[13] E. Christophe, D. Léger, and C. Mailhes, “Quality criteria benchmark
for hyperspectral imagery,” IEEE Trans. Geosci. and Remote Sensing,
vol. 43, no. 9, pp. 2103–2114, Sept. 2005.

[14] F. W. Chen, “Archiving and distribution of 2-D geophysical data using
image formats with lossless compression,” IEEE Geosci. and Remote
Sensing Letters, vol. 2, no. 1, pp. 64–68, Jan. 2005.

[15] T. Akgun, Y. Altunbasak, and R. M. Mersereau, “Super-resolution re-
construction of hyperspectral images,” IEEE Trans. Image Processing,
vol. 14, no. 11, pp. 1860–1875, Nov. 2005.

[16] AVIRIS Free Data. (2006) Jet Propulsion Lab. (JPL). Ca-
lifornia Inst. Technol., Pasadena, CA. [Online]. Available:
http://aviris.jpl.nasa.gov/html/aviris.freedata.html

III  1212


