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ABSTRACT

We present in this paper a modi ed density-assisted particle
lter for indoor mobile robot localization in a situation where

the environment map is subject to random uncertainties and is
not perfectly known to the tracker. The proposed lter jointly
estimates the robot’s pose and the environment map parame-
ters combining raw measurements from a range- nding laser
scanner and the robot’s odometric data. Experiments with real
data show promising results even in adverse scenarios with
abrupt maneuvers and heavily cluttered environments.

Index Terms— Monte Carlo methods, Nonlinear estima-
tion, State-space methods.

1. INTRODUCTION

We introduced in [1] an improved sequential Monte Carlo
(SMC) lter [2] for tracking the pose of a mobile robot using
a parametric model of the environment. The algorithm in [1]
assumed however perfect knowledge of the environment map,
which is not realistic in most practical scenarios. In this pa-
per, we modify the lter to account for possible uncertainties
in the environment model parameters and test the modi ed
algorithm using real data.

We model the robot’s environment as in [3] by a set of
straight lines speci ed by their respective start and end points.
Unlike in [1], however, we assume that the parameters that
characterize each line are independent realizations of xed
(time-invariant) random variables with a uniform prior distri-
bution. The proposed modi ed SMC lter jointly tracks then
the dynamic (time-varying) robot’s pose and the line param-
eters, assimilating features that are extracted from raw data
generated by a laser scanner mounted on the robot. As in [1],
a preliminary clutter suppression algorithm is applied to the
raw data before the features of interest may be extracted.

Joint estimation of dynamic state variables and static pa-
rameters remains an open and challenging problem in the SMC
literature. As pointed out in [4], the conventional solution of
extending the state vector to include the unknown parameters
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is bound to fail with static parameters due to extreme parti-
cle degeneracy. Other solutions based on assuming an arti -
cial random walk model for the unknown parameters, see e.g.
[5], require on the other hand a suitable speci cation of the
variance of the random drift, which may be in turn dif cult
to select. In this paper, we resort to an alternative approach
known as density-assisted particle ltering [6], which is based
on using the existing particle set to build a parametric approx-
imation of the joint posterior distribution of the dynamic state
variables and the xed unknown parameters and then resam-
pling according to that approximation at the next time step.

The paper is divided into 5 sections. Section 1 is this In-
troduction. In Section 2, we present the theory behind density-
assisted particle ltering in a more general framework than
previously described in [6]. In Section 3, we review the state
and observation models from [1] for the robot pose track-
ing problem and show how the ideas in Section 2 may be
used to design a tracking lter assuming uncertain environ-
ment map parameters. The algorithm proposed in Section 3
is then tested with real data collected by a Magellan Pro Robot
moving in a heavily cluttered room. Experimental results are
shown and discussed in Section 4. Finally, we present in Sec-
tion 5 the conclusions of our work.

2. DENSITY-ASSISTED PARTICLE FILTERS FOR
JOINT STATE AND PARAMETER ESTIMATION

Let {xk}, k ≥ 0, and {yk}, k ≥ 1, be two sequences of
random vectors speci ed by the dynamic model

xk+1 = fk(xk, θ) + uk (1)

yk = hk(xk, θ) + vk (2)

where {uk}, k ≥ 0, and {vk}, k ≥ 1, are two mutually in-
dependent, identically distributed (i.i.d) random sequences; θ
is an unknown, time-invariant random parameter vector in-
dependent of x0, {uk}, and {vk}; and fk and hk are two
(generally nonlinear) known functions.

Given an observed sequence {yk}, k ≥ 1, our goal is to
derive a recursive algorithm for the computation ofE {g(xk, θ)
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| y1:k} where E stands for the expected value (or expecta-

tion), y1:k =
[
yT1 . . .yTk

]T
, and g is any arbitrary (measur-

able) function of the hidden state vector xk and of the un-
known parameter vector θ. Assuming that xk and θ are (ab-
solutely) continuous random vectors with an associated joint
probability density function (pdf) denoted by the lowercase
letter p, we note rst that

E {g(xk, Θ) | y1:k} =
∫ ∫

g(xk, θ) p(xk, θ | y1:k)dθ dxk .

(3)
The integral on the right-hand side of (3) is expanded in turn
as ∫ ∫ [

g(xk, θ)
p(yk | xk, θ) p(xk | θ,y1:k−1)

p(yk | y1:k−1)
× p(θ | y1:k−1)] dθ dxk. (4)

Recalling next that p(xk | θ,y1:k−1) can be computed as∫
p(xk | xk−1, θ) p(xk−1 | θ,y1:k−1) dxk−1, we write the

desired expected value as

1
p(yk | y1:k−1)

∫ ∫ ∫
[g(xk, θ) p(yk | xk, θ) p(xk | xk−1,

θ) p(xk−1 | θ,y1:k−1) p(θ | y1:k−1)] dθ dxk−1 dxk. (5)

In the sequel, let q(xk | xk−1, θ, yk) > 0 be an arbitrary
proposal pdf and de ne

w(xk, θ,xk−1) =
p(yk | xk, θ) p(xk | xk−1, θ)

q(xk | xk−1, θ, yk) . (6)

We re-write then the integral in (5) as

1
p(yk | y1:k−1)

∫ ∫ ∫
[g(xk, θ)w(xk, θ,xk−1)q(xk | xk−1,

θ,yk) p(xk−1 | θ,y1:k−1) p(θ | y1:k−1)] dθ dxk−1 dxk. (7)

The proportionality constant Ck = 1/p(yk | y1:k−1) can be
eliminated in turn by dividing (7) byCk

∫ ∫ ∫
w(xk, θ, xk−1)

q(xk | xk−1, θ, yk) p(xk−1 | θ,y1:k−1) p(θ | y1:k−1)dθ
dxk−1 dxk, which is equal to one. Finally, a Monte Carlo
estimate of E {g(Xk, Θ) | y1:k} can be obtained by drawing
Np samples

• θ(j) ∼ p(θ | y1:k−1)
• x(j)k−1 ∼ p(xk−1 | θ(j),y1:k−1),
• x(j)k ∼ q(xk | x(j)k−1, θ(j),yk),
and making

E {g(xk, Θ) | y1:k} ≈
Np∑
j=1

w
(j)
k g(x(j)k , θ(j)) (8)

where

w
(j)
k =

w(x(j)k , θ(j),x(j)k−1)∑Np

i=1 w(x
(i)
k , θ(i),x(i)k−1)

withw(xk, θ,xk−1) de ned as in (6). It can be shown that the
approximation (8) is asymptotically unbiased and converges
almost surely to the desired expectation as Np → ∞.

2.1. Density-Assisted Bootstrap Particle Filter (DAPF)

Unfortunately, it is normally impossible to sample directly
from p(θ | y1:k−1) and p(xk−1 | θ, y1:k−1) as described in
Section 2. An alternative approach known as density-assisted
particle ltering was introduced originally in a less general
framework in [6] and is based on using the sample set at in-
stant k to build parametric approximations of p(θ | y1:k) and
p(xk | θ, y1:k) that can be then easily resampled from at the
next time step k + 1. A recursive bootstrap algorithm to ac-
complish that task is described in the following steps:

1. Set k = 1; make p̂(θ | y1:k−1) = p(θ) and p̂(xk−1 |
θ,y1:k−1) = p(x0).

2. For j = 1, . . . , Np

• Draw θ̂
(j) ∼ p̂(θ | y1:k−1).

• Draw x(j)k−1 ∼ p̂(xk−1 | θ̂(j),y1:k−1).
• Draw x̃(j)k ∼ q(xk | x(j)k−1, θ̂

(j)
, yk).

• Compute the weights w(x̃(j)k , θ̂(j),x(j)k−1) according to (6).
3. Normalize the weights, and compute the estimates

ẑk|k =
Np∑
j=1

w
(j)
k

[
(x̃(j)k )T (θ̂

(j)
)T

]T

P̂k|k =
Np∑
j=1

w
(j)
k

[
z(j)k − ẑk|k

] [
z(j)k − ẑk|k

]T

where z(j)k =
[
(x̃(j)k )T (θ̂

(j)
)T

]T
.

4. Build new parametric approximations p̂(θ | y1:k) and
p̂(xk | θ,y1:k) matching the sample means and covariance
matrices found in step 3.
5. Make k = k + 1 and go back to step 2.

3. APPLICATION EXAMPLE: MOBILE ROBOTICS

Let xk = [xk yk γk]
T be an unknown random vector that col-

lects, at instant k, the robot’s pose (xk, yk) and orientation an-
gle, γk, with respect to a xed (non-inertial) coordinate sys-
tem, henceforth referred to as the environment system. The
robot’s state xk+1 at instant k + 1 is obtained by the nonlin-
ear stochastic model [1, 3]

⎡
⎣xk+1yk+1
γk+1

⎤
⎦

︸ ︷︷ ︸
xk+1

=

⎡
⎣xk + dkcos(Δγk2 + γk)
yk + dksin(Δγk2 + γk)

γk +Δγk

⎤
⎦

︸ ︷︷ ︸
f(xk, εk)

+

⎡
⎢⎣u

(x)
k

u
(y)
k

u
(γ)
k

⎤
⎥⎦

︸ ︷︷ ︸
uk

(9)
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where εk = (dk,Δγk) is obtained from odometric data col-
lected by the robot and, for the purposes of our discussion,
is deterministic and known for each instant k. The random
sequence {uk} is assumed on the other hand to be i.i.d and
Gaussian with uk ∼ N (0,Q).

3.1. Observation Model

Assume that, for a rectangular room, there are N walls in
the eld of view of the robot’s sensor at instant k, where
N = 1, . . . , 4. For i = 1, . . . , N , the extracted features used
for data assimilation at instant k are [1, 3] the perpendicu-
lar distances, ρk,i, from the robot’s centroid to each detected
wall, and the respective orientation angles, αk,i, of each de-
tected wall line, measured with respect to the moving (iner-
tial) coordinate system of the robot, henceforth referred to
as the robot system. Next, let ρmi , i = 1, . . . , N , denote
the perpendicular distances from the origin of the environ-
ment coordinate system to each detected wall, and let αm

i ,
i = 1, . . . , N , denote the corresponding orientation angles
of each wall line with respect to the same xed coordinate
system. The feature vector yk,i = [ρk,i αk,i]

T for the ith de-
tected wall at instant k is given by the nonlinear model (mod-
i ed from [3])

yk,i =
[
ζk,i(ρmi −√

x2k + y2kcos(α
m
i − βk))

αmi − γk + ξk,i

]
︸ ︷︷ ︸

hk,i(xk,θ)

+vk,i (10)

where βk = tan−1(yk/xk), {vk,i}, k ≥ 1, is a sequence
of Gaussian random vectors with zero mean and covariance
matrices Rk,i, and the constants ζk,i and ξk,i are technical
correction coef cients which ensure that ρk,i > 0 and αk,i ∈
[−π, π] for all relative positions between the robot and the
walls. In real-data applications, a preliminary clutter suppres-
sion algorithm is used to eliminate data points that come from
unwanted objects in the room. A feature extraction routine
combining a weighted Hough transform and least-squares line
tting is used then to compute ρk,i and αk,i for each detected

line in the eld of view of the robot, see [1, 3] for further
details.

3.2. DAPF Pose Tracking

Contrary to our previous work [1], we assume in this paper
that the environment map is parameterized by an unknown,
xed (time-invariant) realization of a random vector θ = [θ1
θ2 . . . θp]

T , where each parameter θl is assumed independent
of θj for l �= j and distributed a priori according to a uni-

form pdf with support in the (known) range
[
θl,min, θl,max].

Given a sequence of observed features y1:k, we recursively
compute a Monte Carlo approximation of the expected robot

pose E [xk | y1:k] at instant k using the modi ed density-
assisted bootstrap particle lter of Section 2.1.

Importance Function Approximation In the implementa-
tion of the DAPF, we approximate the optimal importance
function [2], q(xk | x(j)k−1, θ(j),yk) = p(xk | x(j)k−1, θ(j),yk)
by linearizing the observation model (10) around f(x(j)k−1,

εk−1) and then making q(xk | x(j)k−1, θ(j),yk) ≈ N (m(j)
k ,

Σ(j)k ) where

Σ(j)k =
[
Q−1 + (H(j)k )TR−1k (H(j)k )

]−1
(11)

m(j)
k = (Σ(j)k )

{
Q−1f(x(j)k−1, εk−1)

+ (H(j)k )TR−1k
[
yk − hk(f(x

(j)
k−1, εk−1), θ

(j))

+ H(j)k f(x(j)k−1, εk−1)
]}

. (12)

In (12), yk is a column vector of variable dimension that col-
lects the extracted features yk,i corresponding to all walls that
are in the eld of view of the robot at instant k. Similarly,Rk

is a block-diagonal matrix collecting the corresponding fea-
ture extraction covariance matricesRk,i andHk is a long ma-

trix obtained by stacking the matrices H(j)k,i = ∂hk,i(xk,θ
(j))

∂xk

evaluated at xk = f(x(j)k−1, εk−1), for each detected wall i.

Parametric Approximation of the Posterior Density
In step 4 of the algorithm in Section 2.1, we use the following
parametric approximations:
1. p̂(θ | y1:k) =

∏p
i=1 B(θi;λi,1, λi,2), where B(θi;λi,1,

λi,2) is a shifted Beta pdf with (time-varying) shape param-
eters λi,1 and λi,2 matching the posterior sample means and
sample variances for the parameter θi computed as in step 3
described in Section 2.1.
3. p̂(xk | θ̂(j),y1:k) = N (a(j)k ,P(j)k ) where a(j)k and P(j)k
are computed using the linear least-squares estimates

a(j)k = x̂k,k +Pxk,θ
k|k (Pθ

k)
−1 (θ̂

(j) − θ̂k) (13)

P(j)k = Px
k|k −Pxk,θ

k|k (Pθ
k)
−1 (Pxk,θ

k|k )T , (14)

where x̂k,k, θ̂k, Px
k|k, P

xk,θ
k|k , and Pθ

k are obtained from the

sample mean ẑk|k and the sample covariance matrix P̂k|k
from Section 2.1.

Feature Extraction
The features yk must be computed from the raw laser data
at each iteration of the algorithm. The rst step in the fea-
ture extraction process is to convert the sensor measurements
from the robot coordinate system to the environment coor-
dinate system using a predicted pose x̂k|k−1 based on past
observations only. In a sequential Monte Carlo framework,
the predicted pose can be approximated by sampling a set of

auxiliary particles x(j)k ∼ p(xk | x(j)k−1, θ̂
(j)

) and then mak-

ing x̂k|k−1 ≈ (1/Np)
∑

j x
(j)
k . The procedure is somewhat
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simpli ed in the particular application in this paper since the
kinematic model in equation (9) does not depend on the un-
known parameter vector θ. Following the coordinate conver-
sion, the algorithm decides which lines fall within the eld
of view of the sensor and, given a set of validated measure-
ments within a speci ed range around the walls, extracts the
features yk using a weighted Hough transform combined with
a linear least-squares line estimation procedure as described
in [1, 3]. After the feature extraction routine is complete, the
auxiliary particles x(j)k are discarded and new samples x̃(j)k
are drawn from the measurement-driven importance function
q(xk | x(j)k−1, θ(j), yk).

4. EXPERIMENTAL RESULTS

We tested the proposed algorithm with real data recorded in
a heavily cluttered room using a laser scanner mounted on
a Magellan Pro robot. The room is represented by a set of
four straight lines corresponding to each of its walls. The
start and end points of each of the four straight lines are mod-
eled as unknown uniform random variables de ned on a range
equal to the true parameter value plus or minus a 10 % uncer-
tainty. In the implementation of the tracking lter, we as-
sume for simplicity time-invariant, empirically-estimated co-
variance matrices Q and Rk,i = R̃, i = 1, . . . , 4, given
by R̃ = diag(502, (π/5)2), Q(1, 1) = 16.49, Q(2, 2) =
5.24, Q(3, 3) = 0.0000989, Q(1, 2) = Q(2, 1) = −4.18,
Q(1, 3) = Q(3, 1) = 0.0229, and Q(2, 3) = Q(3, 2) =
−0.0014. The initial pose (x0, y0) is assumed Gaussian with
standard deviation equal to 20 cm in both dimensions.

Figure 1 shows the robot trajectory estimated by the pro-
posed DAPF tracker over 150 consecutive time steps. The
ltered trajectory is superimposed to the trajectory obtained

by the deterministic integration of the robot’s odometric data
(without any laser data fusion ) and is compared to our best
estimate of the ground truth. As expected, the trajectory pre-
dicted deterministically by the odometric data alone deviates
over time from the real robot trajectory highlighting the need
for data assimilation and stochastic modeling of the dynamic
evolution of the robot’s pose. We see from Figure 1 that
the proposed DAPF tracker was capable however of track-
ing the robot’s position fairly accurately even though the cho-
sen trajectory includes abrupt turns close to corners where the
robot’s sensor has a very narrow eld of view, leading to poor
feature extraction.

5. CONCLUSIONS

We presented in this paper a modi ed density-assisted particle
lter for dynamic pose tracking in mobile robotics assuming

a scenario where the robot’s environment map is subject to
random uncertainty and is not perfectly known to the tracking
lter. The proposed lter combines a kinematic model based
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Fig. 1. Estimated robot trajectory using real data.

on the integration of the robot’s odometry and an observation
model based on geometric features that are extracted from raw
laser scan data. Experiments with real data show good results
even in dif cult scenarios where the robot makes abrupt ma-
neuvers in regions where the eld of view of the laser sensor
is very narrow.
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