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ABSTRACT

This paper addresses the important and ubiquitous problem of
sampling from a product of Gaussian mixtures. An exact solution is
often computationally infeasible, thus motivating the development
of efficient sampling schemes. However, naive Markov chain Monte
Carlo algorithms perform poorly in cases where the product mixture
is highly multi-modal. In this paper we follow the trend of recent
work utilizing multi-scale sampling methods, and propose two new
multi-scale Markov chain Monte Carlo algorithms based on simu-
lated and parallel tempering. Empirical results indicate that for the
same computational budget, this class of methods can improve per-
formance in cases with widely separated modes.

Index Terms— Gaussian Mixtures, MCMC Methods, Parallel
Tempering, Gibbs Sampler, Non-Parametric Belief Propagation

1. INTRODUCTION

This paper addresses the problem of efficient sampling from a prod-
uct of M Gaussian mixtures of d dimensions, each consisting of N
components. This calculation arises in a number of statistical in-
ference algorithms which manipulate probability densities that are
represented by a Gaussian mixture. An important example involves
inference in graphical models, where two related algorithms—Non-
Parametric Belief Propagation (NBP) [1] and Sequential Auxiliary
Particle Belief Propagation [2]—both require sampling from prod-
ucts of mixtures in order to fuse information from different nodes.
Another application is to the Product of Experts framework [3], in
which a probabilistic model is constructed from a product of sim-
ple distributions. As will be seen later, a key requirement of these
algorithms is the generation of iid samples from the product mixture.

It is easily seen that the product density has O(NM ) terms and
so naive approaches to sampling are infeasible. In fact, in some ap-
plications the number of Gaussians per mixture (N ) is on the order
of hundreds, with the number of mixtures (M ) depending on the
density of the graph [1]. Several algorithms have been proposed
to address this problem, but current solutions remain unsatisfactory.
For instance, importance sampling was considered in [1] and [2], but
was shown to perform poorly in cases where the product density con-
tained many separated modes. A method was proposed in [4] to sam-
ple efficiently from an approximation to the product density whose
quality was controlled by a parameter ε; this method was found to
perform well for small examples, but is sensitive to dimensionality.

A number of MCMC approaches using Gibbs sampling were
introduced in [1] and [4]. The slow mixing of these samplers in
cases when the product density is multi-modal led the authors to

consider an alternative approach based on simulated annealing [5].
By constructing a multi-scale representation of each Gaussian mix-
ture in the product, a Gibbs sampler was designed to move from a
coarse to a fine representation of the product mixture—thereby ex-
ploring the state space more widely. Nonetheless, once it moved
to the finest level corresponding to the original mixture, the sam-
pler mixed slowly once again, therefore requiring multiple short runs
of the overall algorithm in order to obtain iid samples (a desire for
which will be explained below). However, while multiple restarts
reduce the level of statistical dependency among samples, the small
number of iterations may not be sufficient to converge to stationar-
ity, which in turn implies that the sampler may not sample from the
correct target distribution.

In this paper, we propose two multi-scale MCMC algorithms
based on the ideas of simulated tempering [6] and parallel temper-
ing [7] rather than simulated annealing. The crucial feature of these
algorithms is that the scale of the representation is treated as a ran-
dom quantity; Markov chain moves from fine-to-coarse and coarse-
to-fine representations of the product mixture are allowed. This
eliminates the need for multiple restarts; instead, one long run of
the chain can be used to obtain all the required samples. We show
that this class of algorithms is able to outperform previously pro-
posed multi-scale approaches given the same computational budget.
In Section 2 we state the precise form of the problem to be consid-
ered and discuss the infeasibility of exact computations. We describe
existing MCMC algorithms in Section 3 and present the new algo-
rithms in Section 4. Experimental results are given in Section 5.

2. PROBLEM STATEMENT

We begin by fixing notation and presenting a number of formulae
that will be used repeatedly. Let x ∈ R

d and {p1(x), . . . , pM (x)}
denote an associated set of M Gaussian mixtures, with N (x; μ, Σ)
denoting a Gaussian density in x having mean μ and covariance Σ.
We wish to draw a sample from the product mixture p(x):

p(x) ∝
M∏

m=1

pm(x); pm(x) =

N∑
n=1

wmnN (x; μmn, Σmn).

To explicitly index each component in the product mixture p(x),
we employ an M-dimensional vector L = (l1, . . . , lM ). Note that
each coordinate lm ∈ ZN−1, implying that L can take on NM dis-
tinct values. Each Gaussian in this product mixture arises as a cross
term in the product over all mixtures pm(x), and L indexes Gaussian
components that appear in the cross term. Specifically, if lm = n
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then the nth component of the mth mixture is in the Gaussian cross-
term indexed by L. In addition to restricting each mixture to have an
equal number of components N , we also require that N be a power
of two. These assumptions are only for clarity of exposition; they are
readily relaxed and the algorithms we present generalize naturally.

Given a specific label vector L, the formulae needed to compute
the weight, mean and covariance of the Gaussian in the associated
product mixture indexed by L are as follows:

Σ−1
L =

M∑
m=1

Σ−1
lm

; Σ−1
L μL =

M∑
m=1

Σ−1
lm

μlm (1)

wLN (x; μL , ΣL) =

M∏
m=1

wlmN (x; μlm , Σlm). (2)

These expressions allow for exact computation of all parameters
in the product mixture. However, sampling directly from this mix-
ture requires calculation of the normalizing constant Z =

∑
L

wL ,

which in turn has complexity O(NM ). This makes exact sampling
from the product mixture a prohibitively expensive procedure, and
motivates the pursuit of approximate methods. To begin, consider a
joint distribution on the mixture labels li defined according to (2):

p(L) = p(l1, . . . , lM ) =
wL

Z
∝

∏M

m=1
wlmN (x; μlm , Σlm)

N (x; μL , ΣL)
.

To draw a sample from the product mixture p(x), we first draw a
sample from p(L) and then draw a sample from the Gaussian density
indexed by it. Thus the problem at hand is to draw samples from
p(L) without computing the normalizing constant Z. While past
approaches such as ε-exact sampling [4] focused on estimating Z
directly, MCMC methods require only the ability to evaluate p(L)
pointwise up to normalizing constants. As the basis for our work,
we briefly review two recently derived MCMC algorithms.

3. EXISTING MCMC ALGORITHMS

3.1. Sequential Gibbs Sampler

Sampling one label at a time conditioned upon the others defines a
Gibbs sampler with respect to p(L). After the state of the sampler

is initialized to L0 =
(
l01, . . . , l

0
M

)
, a single iteration of the Gibbs

sampler consists of M steps, each of which updates a label lm while
leaving the other M -1 labels fixed as follows:

Algorithm 1 Sequential Gibbs Sampler

1. Determine μ̄ and Σ̄ of the product distribution of M−1 Gaus-

sians using (1) and (2):

N (x; μ̄, Σ̄) ∝
∏
i�=m

N (x; μli , Σli).

2. Fixing x, determine the probability of each lm via:

w̄lm ∝ wlmN (x; μlm , Σlm)N (x; μ̄, Σ̄)

N (x; μL , ΣL)
.

3. Sample a new label lm according to p(lm = l) ∝ w̄l.

In practice, samples from p(L) are taken as the output of mul-
tiple short runs of the Gibbs sampler each of length T , and sam-

ples from p(x) are then drawn from the Gaussians indexed by the
sampled labels. The computational complexity of drawing a sin-
gle sample is O(TMN), a significant improvement from O(NM ).
However, in cases when p(L) is multi-modal, the Gibbs sampler de-
scribed mixes slowly—thus requiring T to be very large in order to
produce samples in this manner.

3.2. Multi-Scale Gibbs Sampler

To speed up the mixing rate of the Gibbs sampler, a multi-scale ap-
proach based on KD-Trees (Appendix A) that builds up a sequence
of coarser approximate models has been found to be helpful [4]. The
coarser the representation, the easier it is for an MCMC sampler to
move among modes. Here we detail the multi-scale sampler of [4]
built upon Algorithm 1 that is associated with this representation.

Corresponding to each mixture pm(x) in the product p(x), we
construct a KD-Tree Tm having J = log2(N) + 1 levels. This al-
lows us to construct coarser approximations to the overall product
mixture by successively substituting corresponding approximations
to each of the product terms in turn. Namely, let j ∈ {1, . . . , J}
index resolution, and let pj

m(x) be the mth Gaussian mixture repre-
sented by the j th level of its KD-Tree, where j=1 corresponds to the
top level (with one node) and j=J corresponds to the bottom level
(with N nodes). We now consider a total of J approximations to the
product mixture, indexed according to resolution as:

pj(x) ∝
M∏

m=1

pj
m(x). (3)

Corresponding to each product mixture pj(x) is a distribution
on the labels pj(L) indexing the Gaussians in it. Notice that setting

j=J yields pJ(x) � p(x) and pJ(L) � p(L), thereby recover-
ing the original problem. Also, the cardinality of the label space
increases by a factor of 2 with each increase in resolution; since the
distributions pj(L) are then defined on different state spaces, we
introduce a superscript Lj in the sequel, indicating ljm ∈ Z2j−1−1.

Algorithm 1 is run for nj iterations at each resolution j, begin-
ning with level 1 and ascending to level J . To move from level j to
j+1, a sample x is drawn conditioned on the current label, and then
the labels at the next level are drawn conditioned on x according to
the following equations:

x ∼ N (x; μL , ΣL); p(lm =n|x) ∝ wmnN (x; μmn, Σmn).
(4)

Continuing in this way, the sampler progresses to the finest res-
olution (j=J) and draws samples from the desired product mixture.
When the number of iterations per level is fixed at T , the complexity
of drawing one sample is O(TMN log N).

4. NEW MULTI-SCALE MCMC METHODS

The small increase in complexity associated with the multi-scale
sampler described above results in dramatically improved perfor-
mance; however, once the sampler reaches the bottom level, it once
again mixes slowly. Consequently, consecutive samples produced by
one long run of the algorithm are highly correlated. However, since
the samples are typically used to construct a kernel density estimate
of the product mixture [1], it is important to obtain iid samples be-
cause dependency among them introduces bias into the bandwidth
selection rule. Restarting the sampler alleviates this problem, but
introduces another; if we were to keep the number of iterations the
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same, random restarts would turn one long run into multiple short
runs. On the other hand, the algorithm may require many iterations
to converge to stationarity, so long runs are necessary to sample from
the correct distribution.

Hence, the design of this multi-scale algorithm presents us with
a trade-off between two desired goals: producing iid samples, and
sampling from the correct distribution. This trade-off can be avoided,
however, if the MCMC sampler can move up and down in the multi-
scale representation without being restarted. In this way consecutive
samples are less correlated, and the sampler can be run long enough
to more closely approach the stationary distribution.

Two algorithms that take advantage of these ideas are simulated
and parallel tempering. The key idea behind them is to induce a
multi-resolution representation of some target density π(x) defined
on state space Ω in which the resolution parameter is treated as a ran-
dom variable. Both algorithms work by constructing a multi-scale
representation of π(x) as a sequence π1(x), . . . , πJ−1(x) of distri-

butions that are successively finer approximations to πJ(x) � π(x).

4.1. Simulated Tempering Sampler

The simulated tempering algorithm [6] defines an MCMC sampler
through a Markov chain on the state space Ω×{1 . . . J}. The chain
can make two moves from state (x, j): One possibility is to leave
j fixed and mutate (x, j) to (y, j) using the original MCMC sam-
pler. Alternatively, a (swap) move from (x, j) to (x, j′) is attempted
whereby j′ = j±1 with equal probability. The acceptance probabil-
ity of the move (x, j) to (x, j′) is given by

min

(
1,

πj′(x)Zj

πj(x)Zj′

)
, (5)

where Zj is the normalizing constant of πj(x).
To extend simulated tempering to the problem at hand we use

KD-Trees rather than the temperature-based scaling that is common
in the statistics literature. Let 0 < τ < 1 be the probability of a
swap move, and suppose the sampler has been run for k iterations
and is in the state (Lj

k, j). The next iteration proceeds as follows:

Algorithm 2 Simulated Tempering Sampler

1. With probability τ , perform a mutation move at scale j using

Algorithm 1, thereby sampling (Lj
k+1, j) from (Lj

k, j).

2. Otherwise perform a swap move:

(a) Set j′=j±1 with probability 1/2. Draw x from the

Gaussian indexed by the label Lj
k.

(b) Draw Lj′
k+1 conditioned on x using (4) and move to

(Lj′
k+1, j

′) with probability given by (5):

min

(
1,

pj′(Lj′
k+1)q(L

j
k|L

j′
k+1)Zj

pj(Lj
k)q(Lj′

k+1|L
j
k)Zj′

)
.

Here Zj is the normalizing constant of pj(L) and τ controls the
expected number of iterations at each level. The Hastings correction

q(Lj
k|L

j′
k+1)/q(Lj′

k+1|L
j
k) is required to preserve detailed balance;

however, a computationally expensive integration is required to yield
this ratio in closed form. Moreover, the normalizing constants (also
unknown) are needed in order to evaluate the acceptance ratio. We
overcome both of these difficulties in the next algorithm.

4.2. Parallel Tempering Sampler

The parallel tempering algorithm [7] defines an MCMC sampler on
the state space Ω⊗J by using J Markov chains in parallel. In the
mutation move, all J chains move independently of one another so
that the j th sampler updates its state according to Algorithm 1 w.r.t.
distribution πj(x). During the swap move, a pair of neighboring
chains is picked uniformly at random and their samples are swapped.
The acceptance probability of a move that swaps the coordinates j
and j+1 in the state vector y =

(
y1, . . . , yJ

)
is given by:

min

(
1,

πj+1(yj)πj(yj+1)

πj+1(yj+1)πj(yj)

)
. (6)

The extension to our problem follows that of simulated temper-
ing. Let 0 < τ < 1 be the probability of a swap move and sup-
pose the sampler has been run for k iterations and is in the state
(L1

k, . . . LJ
k ). Then the next iteration proceeds as follows:

Algorithm 3 Parallel Tempering Sampler

1. Perform a mutation move with probability τ using Algorithm

1 for all J chains w.r.t. the distributions pj(L) defined in (3).

2. Otherwise perform a swap move:

(a) Pick a pair of neighboring chains (j, j+1) uniformly at

random. Sample x from the Gaussian indexed by Lj
k.

(b) Draw Lj+1
k+1 and Lj

k+1 conditioned on x using (4), and

accept the proposed move with probability given by (6):

min

(
1,

pj+1(Lj+1
k+1)p

j(Lj
k+1)

pj+1(Lj+1
k )pj(Lj

k)

)
.

Notice that the form of the acceptance ratio is simplified, as both
the Hastings corrections and the normalizing constants cancel.

5. EXPERIMENTAL RESULTS

We compare multiple short runs of the sequential and multi-scale
Gibbs samplers of Section 3 to a single long run of the parallel tem-
pering sampler of Section 4.2 using two univariate examples. In the
first experiment, we consider a product of three Gaussian mixtures
each with four components, and in the second experiment three mix-
tures each with eight Gaussians. For each algorithm, 100 samples
were drawn from the product mixture and a kernel density estimate
p̂(x) was constructed using the “rule-of-thumb” method [8]. The ac-
curacy of p̂(x), as measured by the integrated square error between
it and the exact solution p(x), reflects the samplers’ performance.
We report the (Monte Carlo estimate of) integrated square error be-
tween p̂(x) and p(x) as the number of iterations I per generated
sample was varied. The implementation of existing algorithms was
validated using the Kernel Density Estimation Toolbox [9].

For each value of I , all parameters were set so that each algo-
rithm was alloted the same total number of iterations. For the mul-
tiscale algorithms, the number of iterations T at each of J levels
was varied, with I = TJ for each trial. Moreover, since 100 in-
dividual (short) runs of the multi-scale Gibbs sampler were taken
for every trial, a single (long) run of the parallel tempering sampler
was downsampled by a factor of 100 to produce the required sam-
ples for comparison. Finally, I = TJ iterations of the sequential
Gibbs sampler were then run for each trial. In each experiment, T
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Fig. 1. Performance of three sampling schemes, in which samples

are drawn from a product of three mixtures, each having four (Ex-

periment 1, top) or eight (Experiment 2, bottom) components.

was increased successively from one to twenty (further increases of
T yielded no improvement in the performance of the multi-scale al-
gorithms), and error estimates were obtained by averaging 50 Monte
Carlo runs. The probability of a swap move τ was set to 1/2, though
consistent performance was observed for a broad range of values.

As shown in Figure 1, the parallel tempering sampler consis-
tently achieved a lower error rate than the multi-scale Gibbs sampler.
(Both algorithms significantly outperformed the sequential Gibbs
sampler, consistent with the results of [4].) These results suggest
that enabling the sampler to traverse the multi-scale representation in
both directions is helpful. Using one long run to draw samples also
provides greater confidence that the algorithm is sampling from the
correct distribution. Moreover, these results indicate that the sam-
pler does not have to progress all the way to the coarsest level of the
representation in order for consecutive samples to sufficiently decor-
relate, thereby increasing computational efficiency.

6. DISCUSSION

Here we have presented two new multi-scale MCMC constructions
for sampling from products of Gaussian mixtures. By using one
long MCMC run that can traverse a multi-scale representation in the
coarse-to-fine as well as fine-to-coarse directions, these construc-
tions simultaneously serve to decrease the dependence among con-
secutive samples, and to better ensure that these samples are drawn
from the correct (stationary) product mixture.

In contrast to previously proposed schemes, the resulting multi-
scale methods are full MCMC algorithms whose convergence prop-
erties are amenable to analysis using available methods. This will be
one direction of our future work. Another promising avenue of fu-
ture research is to incorporate techniques from other multi-level sam-
plers appearing in the literature on population Monte Carlo methods.
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A. DYADIC KD-TREES

A KD-Tree (k-dimensional tree) is a data structure that stores a hi-
erarchical representation of a set of points along with their statis-
tics [10]. It is constructed through a two-pass procedure, by first
recursively dividing the point set and then recursively computing
statistics associated with each set of points.

The construction of the KD-Tree begins by associating all points
in the data set with the root node. The points are then partitioned into
two sets about the median of the dimension of the highest variance.
These sets are then associated to children of the root node, and the
procedure is repeated until the resulting child nodes contain only a
single point. The statistics at each node are computed as follows.
First, each of the leaf nodes s is assigned a weight ws, a covariance
Λs, and a mean μs. The statistics of a parent node are then computed
as a function of the statistics of its children. We denote the left and
right children of node s by sL and sR, respectively. Its statistics are
then updated according to the following equations:

ws = wsL + wsR ; wsμs = wsLμsL + wsRμsR

ws(Λs + μ2
s) = wsL

(
ΛsL + μ2

sL

)
+ wsR

(
ΛsR + μ2

sR

)
.

KD-Trees provide a natural multi-scale representation of a single
Gaussian mixture, with the point set containing the means of the
component Gaussians. The leaf nodes then represent each of the
Gaussians in the mixture, and assigned covariances and weights are
those of the mixture components.
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