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ABSTRACT

Among the various types of existing speech enhancement algorithms,
respective advantages are usually well-known and well-studied, mak-
ing it possible to choose the right algorithm given a certain type
of audio quality requirement (e.g. background noise intrusiveness,
naturalness of the speech, etc.). Very little has however been said
so far on the quality of speech enhanced by particle lters (PFs).
In this paper, we show the detailed results of the analysis of PF-
enhanced speech signals. This analysis is conducted using several
objective measures, and is based on the comparison with other en-
hancement algorithms. We nd that in general, PF-based algorithms
yield speech signals which are among the most natural-sounding,
with a residual noise that can be seen as a white noise with its vari-
ance “modulated” by the resulting speech.

Index Terms— particle lters, speech enhancement, speech qual-
ity, objective measures

1. INTRODUCTION

In the diversity of speech enhancement algorithms, a fairly recent
family of methods is that of particle lters. A PF is a sequential esti-
mation method based on Monte-Carlo simulation, which can operate
on the broadest range of state-space formulated problems [1]. Using
an auto-regressive (AR) speech model, researchers have been able to
successfully apply PFs to speech denoising, employing various addi-
tional techniques such as Rao-Blackwellisation [2,3], smoothing [3],
auxiliary PF [4], etc. Unfortunately, the quality of speech signals en-
hanced by particle ltering algorithms has not yet been thoroughly
documented. If we consider that the assessment of speech quality
necessitates the use of several objective measures, descriptions of
informal listening tests and comparisons with other algorithms, then
the existing literature has little to offer on the subject.

In [2], only SNR results are reported. The authors describe the
result of an experiment on a spoken sentence, with a particular in-
put SNR: the two main observations are that the residual noise is
approximately white and time-varying, and that there is no musical
noise. A comparison is made with another algorithm (one that is pre-
sented in [5]), although this comparison is summarized by the fact
that the algorithm in [5] introduces some musical noise, while the
particle lter does not. In [3], again only SNR results are reported.
Among the experiments, one is conducted on a sentence at a given
SNR, and the results are compared with those obtained with an ex-
tended Kalman smoother (EKS). The conclusions given are that the
Rao-Blackwellised particle smoother proposed removes more noise
than the EKS, but that there is a higher sibilant residual noise. In [4],
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no objective measures are used, and the authors note again the ab-
sence of musical noise, and some residual sibilance during unvoiced
sounds.

The SNR is unfortunately a poor indicator of speech quality, for
it is not well correlated with mean subjective opinions on the mat-
ter [6]. Since test results on speech signals are given for a single SNR
value, what we may conclude from the sources abovementioned in
terms of intelligibility and quality is therefore limited. We can how-
ever expect a PF-enhanced speech signal to contain no musical noise,
and we also expect to hear some sibilance, as well as a time-varying
white residual noise.

In this paper, we are interested in lling this gap by thoroughly
analyzing the performance of two PF algorithms. The analysis will
be mainly conducted using 4 popular objective measures: the overall
SNR, the average segmental SNR, the PESQ, and the LAR, which
are rst described in section 2. Then, in section 3, a description of the
algorithms used is given, which also include 5 non-PF algorithms,
and we report some commented simulation results. The reader is
welcome to reproduce some of these results using some code that is
made available online. Finally, we conclude on the quality of particle
lter-enhanced speech signals.

2. OBJECTIVE MEASURES OF SPEECH QUALITY

To assess the quality of speech sounds, although the systematic use
of subjective tests on a large population is the ideal solution, un-
fortunately usually in practice the population available is limited,
making the results highly variable and sometimes ambiguous. In
addition, the whole process may take too long to be practical, es-
pecially for initial testing purposes. Therefore some mathematical,
objective quality measures are necessary. Ideally, these measures
should be as highly correlated as possible to a standard mean-opinion
score (MOS) test1, or to a subjective intelligibility measure. In other
words, we would like the measures to be good predictors of aver-
age subjective preferences. We choose here to use a few different
measures, each having advantages and disadvantages.

2.1. Overall SNR (OSNR)

The classic overall signal-to-noise ratio (OSNR) is simply the ratio
between a (clean) signal’s energy and the energy contained in the
noise or error. The SNR is higher if the squared difference between
the estimated speech and the original speech signal is smaller. It
is considered that the SNR is not a reliable indicator of intelligibil-
ity and speech quality. Still, the overall SNR can be an interesting

1by standard, we mean “as de ned by the Telecommunication Standard-
ization Sector of the International Telecommunication Union” – abbreviated
by ITU-T
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“ rst glance” at the performance of an algorithm: a very low SNR is
usually not a good sign! In addition, it is very inexpensive computa-
tionally, and thus it can be used as a simple online indicator that, for
example, an algorithm is not on a divergent path.

2.2. Average segmental SNR (ASSNR)

The average segmental SNR (ASSNR) is based on the same prin-
ciple as the overall SNR, except that it is computed as the average
of the SNR of segments, or frames (possibly overlapping and win-
dowed). In this paper, where we are focusing on speech sampled at 8
kHz, we use a Hanning window of width 30 milliseconds (240 sam-
ples), and 75% overlaps (that is, the window is anchored every 7.5
milliseconds or 60 samples). The ASSNR is a more insightful qual-
ity measure than the overall SNR, in the sense that it is a better MOS
predictor [7,8]. Based on the multiple experiments and informal lis-
tening tests conducted in this paper, we nd that in general a higher
ASSNR means less residual background noise. This nding is in
accordance to a study presented in [9], in which objective measures
for speech enhancement are evaluated. In [9], listeners are given an
enhanced signal, and are asked to give three scores from 1 to 5. They
must rst rate the distortion on the speech signal itself (“SIG” score,
in terms of naturalness), then they must rate the background noise
(the “BAK” score, in terms of intrusiveness), and nally they must
give an overall score (the “OVRL” score). Subsequently, the correla-
tion between several objective measures (including the ASSNR) and
these three scores is inferred. The ASSNR is found to be much more
correlated to the “BAK” score than to the “SIG” score.

2.3. PESQ

The PESQ (Perceptual Evaluation of Speech Quality) algorithm [10,
11] is an objective method to predict the results of subjective MOS
tests, designed purposely for handset telephony speech codecs. Al-
though PESQ scores were not designed for speech enhancement al-
gorithms evaluation, they are still found to provide a meaningful in-
dication of performance and they are frequently used by researchers
for this purpose.

The PESQ algorithm compares the original, clean speech signal
to the output of the enhancement algorithm, and penalizes the nal
score based on measures of the distortion. The PESQ is perceptual
in the sense that the amount of distortion is measured in the context
of a model for the human auditory system. According to the ITU-
T, PESQ scores demonstrate a good correlation with subjective test
results 1.

2.4. Log Area Ratio (LAR)

The Log-Area Ratio (LAR) score is another objective speech quality
measure; it is recommended in [12] for the evaluation of speech en-
hancement algorithms. As opposed to the previous three measures,
the LAR measures a distance, and therefore it increases as distor-
tion increases. The distance measured is based on the re ection co-
ef cients of the corrupted (or enhanced) speech, {ρx̂(m)}Mm=1, and
those of the clean speech, {ρx(m)}Mm=1 (M is the order of the linear

1Even though this is generally the case, the PESQ cannot be blindly
trusted. For example, in the following page:
http://microtronix.ca/pesq-disc.html, audio examples are
shown where two degraded signals obtain the same PESQ score, even though
one of them is of signi cantly lower quality.

prediction analysis). For a given frame, it is computed as follows:
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This measure can be seen as a way to estimate ef ciently the
differences between the logarithms of the spectra of the clean and
the corrupted speech signals, (i.e. the power spectra are directly re-
lated to the re ection coef cients). The LAR measure has been used
for testing the performance of speech enhancement strategies (for
example [13, 14]). The LAR is also a better indicator than the over-
all SNR, as it is better correlated with expected opinion scores [6].
In [6], it is observed that the LAR scores are more correlated to sub-
jective listening test results than the Itakura-Saito measure, which is
another popular spectral distortion measure based on the same linear
prediction principle. In our experience, the LAR distance is much
more focused on the signal’s intelligibility and naturalness than on
the background residual noise. This observation is in accordance
with the results reported in [15], where several objective measures
are assessed (including the PMF, the PSQM, the Itakura-Saito dis-
tance, the log-likelihood ratio, the ASSNR and the weighted spectral
slope distance). [15] reports that the LAR has the highest correlation
with speech naturalness, and even with overall subjective ratings.

3. ALGORITHMS USED, SIMULATION RESULTS AND
ANALYSIS

3.1. Selected algorithms and experimental conditions

It is proposed to assess two different PF-based algorithms, which are
given in Table 1 (along with other algorithms). The rst one is a reg-
ular particle ltering algorithm (PF in the table), as described in [4].
We only noticed modest improvement when using an auxiliary PF, so
we only used a simple PF. In addition, we use a Rao-Blackwellised
particle lter (RBPF in the table), as described in [2, 3]. For both al-
gorithms, we employed the very light technique of xed-lag smooth-
ing [2,16] (as opposed to more advanced, but heavy, smoothing tech-
niques such as the one explained in [3], in order to avoid excessively
long processing time).

Algorithm Abbreviation Reference
Regular PF PF [4]
Rao-Blackwellised PF RBPF [2, 3]
Spectral subraction SSUB [17]
Kalman lter + EM KF+EM [5]
MMSE short-time spectral amplitude MMSE-STSA [18]
Wiener Filter + a priori SNR estimator WF+ASNRE [19]
Dual EKF DEKF [20]

Table 1. Index of algorithms used

For comparisons, we also used several other speech enhance-
ment algorithms: a basic spectral subtraction algorithm (SSUB),
a Kalman lter-based algorithm using an EM algorithm to update
the speech parameters (KF+EM, [5]), a method of denoising us-
ing a minimum mean-square error log-spectral amplitude estima-
tor (MMSE-STSA, [18]), an algorithm based on a priori SNR es-
timation (WF+ASNRE, [19]), and the Dual extended Kalman lter
(DEKF, [20]). The clean speech signal, a male voice uttering the
sentence “Primitive tribes have an upbeat attitude”, is available for
download at the demonstration page:

http://cslu.ece.ogi.edu/nsel/demos/
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In the following experiment, we consider that the noise variance
is known in advance1. The PF and RBPF algorithms use Gaussian
random walks on the speech parameters (the AR vector and the exci-
tation noise log-variance), with variances according to those of [2].
The importance density used for the regular PF is the one described
in Section 5.3 of [4]. The PF is set to use 2000 particles, and the
RBPF 600 of them (using more particles was not found to have any
signi cant average impact on the results). Accordingly, we simplify
the KF+EM algorithm of [5] in such a way that the observation vari-
ance is not estimated, but known2. The EM algorithm estimating
the parameters is set to iterate 20 times towards convergence, on
frames of 128 samples. For the SSUB, the MMSE-STSA, and the
WF+ASNRE algorithms, an estimate of the noise spectrum is com-
puted from the rst few frames, containing only noise (speci cally,
we use the rst 1000 samples, or 0.125 seconds)3. For the DEKF
algorithm, we directly use the two demonstrations for the AWGN
subcase with known variance presented on the DEKF demonstra-
tion webpage above. We corrupt the clean signal with a computer-
generated white Gaussian noise sequence to produce noisy signals
with overall SNRs of approximately 0, 4, 7, and 10 dB. For 0 and
7 dB, we directly use the noisy signals available on the webpage
abovementioned.

3.2. Simulation results

Type of algorithm Quality measure Input SNR (dB)
0 4 7 10

OSNR 7.38 10.18 11.91 14.43
PF ASSNR -0.75 1.03 2.31 3.98

L = 8 PESQ 1.88 2.14 2.17 2.27
LAR 6.15 5.68 5.14 4.71

OSNR 7.50 10.32 12.36 14.60
RBPF ASSNR 0.40 2.11 3.21 4.76
L = 8 PESQ 1.81 2.06 2.17 2.26

LAR 5.39 5.26 4.72 4.36

SSUB

OSNR 6.60 9.00 11.38 13.12
ASSNR -2.38 -0.91 0.88 2.30
PESQ 2.10 2.25 2.30 2.40
LAR 6.27 5.79 5.34 4.71

KF+EM

OSNR 7.39 10.02 11.93 14.12
ASSNR -0.80 1.04 2.12 3.67
PESQ 1.87 2.03 2.10 2.21
LAR 5.53 5.17 5.02 4.47

MMSE-STSA

OSNR 4.44 5.78 6.49 8.01
ASSNR -1.96 -0.53 0.66 2.36
PESQ 1.80 1.92 2.00 2.23
LAR 6.40 6.18 6.00 5.79

WF+ASNRE

OSNR 3.71 5.25 5.96 7.70
ASSNR -0.49 0.80 1.79 3.40
PESQ 1.57 1.65 1.97 2.16
LAR 7.46 7.79 7.70 7.62

DEKF

OSNR 7.54

–

11.72

–ASSNR 0.60 2.72
PESQ 2.24 2.56
LAR 6.29 5.47

Table 2. Comparison of PF-based algorithms to other enhancement
schemes . The input signal (a male voice) is corrupted with AWGN.
The results obtained from the PF-based methods are an average over
10 experiments, and L denotes the value of the xed lag.

1Note that this is not a signi cant advantage for PF-based algorithms,
which can conveniently estimate this variance online as well. Not knowing
its value may however constitute a strong penalty for other algorithms.

2An implementation for the RBPF and the KF+EM algorithms used can
be found at www.site.uottawa.ca/∼mustiere/

3An implementation for the MMSE-STSA and the WF+ASNRE algo-
rithms used can be found at
http://dea.brunel.ac.uk/cmsp/Home Esfandiar/

The raw simulation results are presented in Table 2. For clarity, a
rough summary of the observations made in section 2 to describe the
objective measures now follows. The OSNR is merely an indicator
that some enhancement (i.e. noise reduction) is taking place. A very
high value may or may not indicate a very high speech quality, but
a low value likely indicates a low speech quality. The ASSNR is
mostly correlated with the background noise intrusiveness, or with
interspeech residual noise. Next, the PESQ is well correlated with
the overall speech quality. Finally, the LAR is mostly correlated with
the speech naturalness.

From Table 2, we can now draw several conclusions. First, com-
paring the two PF-based algorithms with each other, we observe that
the RBPF outperforms the regular PF for all measures used, except
for the PESQ score, for which the PF is only slightly better for 0, 4,
and 10 dB. Judging by the PESQ only, the PF and RBPF are there-
fore almost equivalent in terms of overall speech quality. However,
the ASSNR measure indicates that the background noise is signif-
icantly less intrusive for the RBPF method. In addition, based on
the LAR score, the RBPF-enhanced signal is more natural than the
PF-enhanced signal. Informal listening clearly con rm these ten-
dencies: there is less background noise in the output of the RBPF,
and this noise is less annoying, resulting in a more natural overall
signal. In [2], it was observed that the RBPF-enhanced signals con-
tains a “time-varying” white noise. Listening to the residual noise
only, and observing its waveform (see the two top graphs of Fig-
ure 1), we nd that this residual noise can be further described as a
white noise that is “modulated” by the speech, with an instantaneous
power also depending on the input SNR. At the bottom of Figure 1,
we show a segment of the absolute values of the residual error (lo-
cally time-averaged for improved visualization): the rst half of the
segment shown corresponds to a silence. The purpose of this graph is
to support our claim that for any of the input SNR tested, the RBPF
algorithm recognizes very well the absence of speech, i.e., the in-
terspeech residual noise is brought to a very low value. In contrast,
we nd that the PF-enhanced signal is polluted with a “frying”-type
noise, which remains more noticeable between utterances. In terms
of intelligibility only, both the PF and the RBPF are found to be
roughly equivalent.

0 2000 4000 6000 8000 10000 12000 14000 16000
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0

1
Clean signal

0 2000 4000 6000 8000 10000 12000 14000 16000
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Residual noise, input SNR of 7 dB
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Fig. 1. Observation of the residual noise, RBPF algorithm. The top
gure shows the original speech, the middle one shows the resid-

ual noise in a RBPF-enhanced signal with 4 dB of input SNR. The
bottom graph shows a smoothed segment of the residual noise in ab-
solute value.
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From the comparison with other algorithms, we can see two im-
portant features of the RBPF-enhanced signals: in each of the con-
ditions tested, they obtain the best overall SNR, ASSNR, and LAR
scores (except in the 0 dB case, where the DEKF signal is given a
better overall SNR – not signi cantly, and a better ASSNR). Con-
sidering PESQ scores, no algorithm is clearly standing out, except
the basic spectral subtraction algorithm. The latter does obtain good
PESQ scores, however the resulting speech is corrupted by very an-
noying and intrusive background musical noise, as indicated by a
very poor ASSNR score. From informal listening, our observations
are the following: in terms of listening comfort and naturalness, the
RBPF produces the best signals overall. As in [4], we note a sibi-
lance during unvoiced sounds in the resulting speech. We believe
that it is in fact present within the entire enhanced speech segment,
but only more perceived during these sounds. Among all other al-
gorithms, the KF+EM is the one which outputs signals that are the
closest to what can be expected from a RBPF, although with a quality
that is overall inferior, as seen with the scores reported in the table,
and as con rmed by informal listening tests.

According to further subjective listening tests, we nd that among
all the algorithms tested, the intelligibility is at best preserved, but
not clearly enhanced – listening comfort is what constitutes the cen-
tral difference between them. For example, although the DEKF algo-
rithm is rated with a high PESQ score, the nature of the background
noise penalizes our overall subjective perception of the speech qual-
ity.

4. CONCLUSION

From the experiments conducted, the two main conclusions are the
following. First, we nd that, expectedly, it is worth using a RBPF
rather than a regular PF. In RBPF-enhanced signals, the background
noise is less intrusive, and this noise is more “natural” (it can be iden-
ti ed to a white noise with power modulated by the output speech).
Secondly, we nd that in comparison to the other speech enhance-
ment algorithms tested, the RBPF yields speech signals which are
the most “comfortable” to listen to. Future research directions in-
clude modi cations of PF-based algorithms to accomodate different
types of noises, to reduce the impact of the residual noise, and to
improve the intelligibility.
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