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ABSTRACT
Consider tracking a state space model with multimodal observation
likelihoods using a particle lter (PF). Under certain assumptions
that imply narrowness of the state transition prior, many ef cient
importance sampling techniques have been proposed in literature.
For large dimensional state spaces (LDSS), these assumptions may
not always hold. But, it is usually true that at a given time, state
change in all except a few dimensions is small. We use this fact
to design a simple modi cation (PF-EIS) of an existing importance
sampling technique. Also, importance sampling on an LDSS is ex-
pensive (requires large number of particles, N ) even with the best
technique. But if the “residual space” variance is small enough, we
can replace importance sampling in residual space by Mode Track-
ing (PF-MT). This drastically reduces the importance sampling di-
mension for LDSS, hence greatly reducing the requiredN .

Index Terms: particle lter, mode tracking, importance sam-
pling, Monte Carlo methods, sensor networks.

1. INTRODUCTION
Tracking is the problem of causally estimating a hidden state se-
quence, {Xt}, from a sequence of observations, {Yt} that satisfy the
Hidden Markov Model assumption, i.e. Xt → Yt is a Markov chain
for each t, with observation likelihood (OL), p(Yt|Xt); andXt−1 →
Xt is also Markov with state transition pdf (STP), p(Xt|Xt−1). The
posterior p(Xt|Y1:t) � πt(Xt). For nonlinear and/or nonGaussian
state space models, πt can be ef ciently approximated using a par-
ticle lter (PF) [1, 2, 3]. One of two main issues in PF design is the
choice of importance sampling density that reduces the variance of
importance weights (improves effective particle size)[2].

The most commonly used importance sampling density is the
STP, p(Xt|X

i
t−1) [1](assumes nothing). But since this does not

use knowledge of Yt, the weight variance can be large. For situ-
ations where the OL is multimodal, but the STP is unimodal and
narrow enough to ensure that p∗(Xt) � p(Xt|X

i
t−1, Yt) is uni-

modal, [4] proposes to approximate p∗ by a Gaussian at its mode
and importance sample from it. Other solutions that also assume
p∗ is unimodal are [2, 5]. In many situations, p∗ may be multi-
modal but conditioned on a small part of the state space, denoted
Xt,s, it is unimodal (Assumption 1). When this holds, we propose
to modify Doucet [4]’s method as follows. Let Xt = [Xt,s, Xt,r].
Sample Xt,s from its STP but compute a Gaussian approximation
to p∗(Xt|X

i
t,s) = p∗(Xt,r|X

i
t,s) about its mode and importance

sampleXt,r from it. We refer to this idea as PF-EIS (Algorithm 1).
For large dimensional state spaces (LDSS), which have dimen-

sion more than 10 or 12, the number of particles required for rea-
sonable accuracy is very large [1] and this makes PF an impractical
algorithm. One class of techniques for LDSS is [3, Ch 13],[6] which
resample more than once within a time interval. Alternatively, if
conditioned on a small part of the state (X1:t,s), the rest (Xt,r) has
a linear Gaussian state space model, Rao Blackwellization (RB-PF)
[7] can be used. Now, this assumption may not always hold. But,

in most large dimensional systems, at any given time, “most of the
state change” occurs in a small number of dimensions (“effective ba-
sis”) while the change in the rest of the state space (“residual space”)
is “small” [8, 9]. If the variance of residual state change is “small
enough” so that Theorem 1 is applicable, Assumption 1 will hold. In
addition, if it is even “smaller” to ensure that Theorem 2 holds with
a small enough ε, the importance sampling of Xt,r can be replaced
by Mode Tracking (MT). We call this idea PF-MT (Algorithm 2).

MT reduces the importance sampling dimension from dim(Xt)
to dim(Xt,s) (huge reduction for large dimensional problems). Of
course, the error in the estimate of Xt,r will also increase. But for
200-250 dim problems such as contour tracking [10, 11], this error is
more than offset by the reduction in error due to improved effective
particle size. Note that PF-MT is a generalization of the contour
tracking idea of [10] which was rst generalized in [8, 9] and used
in [11]. It can also be understood as an approximate RB-PF [7].

Some example applications are as follows. (i) When there are
two different types of sensors tracking temperature at one location,
each with some probability of failure, OL will be bimodal if one of
them fails. When tracking temperature at a large number of nodes
in a sensor network, the state space dimension can be very large and
also the number of possible OL modes can be very large. (ii) In
visual tracking problems such as deforming contour tracking [6, 10,
11] or tracking illumination change of moving objects [13], OL is
multimodal (due to multiple objects, occlusions or clutter) and state
space dimension is large.

Note PF-EIS or PF-MTwill still work if the assumption of p∗(Xt|X
i
t,s)

being unimodal applies most of the time. Also, if system model
changes with time, effective basis dimension can be changed over
time. Also, note that PF-EIS is also applicable to smaller dimen-
sional problems and PF-MT is also useful in situations where p∗ is
actually unimodal.

Organization: In Sec. 2, we explain PF-EIS, give suf cient
conditions for Assumption 1 to hold for an LDSS model and show
how to verify these. PF-MT is explained in Sec. 3. Comparisons
with existing PF methods and discussion are given in Sec. 4.

2. PF-EIS: PF-EFFICIENT IMPORTANCE SAMPLING
The “optimal” importance sampling density, i.e. one that minimizes
the conditional variance of weights is [4] p(Xt|X

i
t−1, Yt) � p∗(Xt).

In most cases, this cannot be computed analytically. [4] suggests ap-
proximating p∗ by a Gaussian about its mode, when p∗ is unimodal.
But when OL is multimodal, p∗ will be unimodal only if the STP is
narrow enough in at least some dimensions. When p∗ is multimodal,
we propose the following modi cation. Split the state vector Xt as
Xt = [Xt,s, Xt,r] so that variance ofXt,r is small enough s.t.

Assumption 1 Conditioned onXt,s, p∗ is unimodal, i.e.

p∗∗,i(Xt,r) � p∗(Xt|X
i
t,s) = p(Xt,r|X

i
t−1, X

i
t,s, Yt) is unimodal
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Algorithm 1 PF-EIS. Going from πN
t−1 to πN

t (Xt) =
∑N

i=1 w
(i)
t δ(Xt − Xi

t), Xi
t = [Xi

t,s, X
i
t,r]

1. Importance SampleXt,s: ∀i, sampleXi
t,s ∼ p(Xi

t,s|X
i
t−1).

2. Importance Sample Xt,r: ∀i, sample Xi
t,r ∼ N (Xi

t,r; m
i
t, Σi

IS). Here mi
t(X

i
t−1, X

i
t,s, Yt) = arg minXt,r Li(Xt,r) and Σi

IS �

(∇2Li(mi
t))

−1 where Li(Xt,r) � − log[p∗∗,i(Xt,r)] = − log[p(Xt,r|X
i
t−1, X

i
t,s, Yt)].

3. Weight & Resample: Compute wi
t =

w̃i
t∑

N
j=1

w̃
j
t

where w̃i
t = wi

t−1
p(Yt|X

i
t)p(Xi

t,r|X
i
t−1

,Xi
t,s)

N (Xi
t,r ; mi

t, Σi
IS

)
& resample. t ← t + 1 & go to step 1.

Algorithm 2 PF-MT. Going from πN
t−1 to πN

t (Xt) =
∑N

i=1 w
(i)
t δ(Xt − Xi

t), Xi
t = [Xi

t,s, X
i
t,r]

1. Importance SampleXt,s: ∀i, sampleXi
t,s ∼ p(Xi

t,s|X
i
t−1).

2. Mode TrackXt,r: ∀i, setXi
t,r = mi

t.

3. Weight & Resample: Compute wi
t =

w̃i
t∑

N
j=1

w̃
j
t

where w̃i
t = wi

t−1p(Yt|X
i
t)p(Xi

t,r|X
i
t−1, X

i
t,s) & resample. t ← t + 1, go to step 1.

When this holds for each particle and for each time, we can use the
Gaussian approximation idea of [4] to approximate p∗∗,i and sample
from it. In practice, even if it holds for most particles at most times,
our proposed algorithm will work. Thus we propose to importance
sample (IS) as follows. Select Xt,s as the minimum number of di-
mensions ofXt required to ensure that Assumption 1 holds. Sample
Xi

t,s from its STP (to sample the possibly multiple modes of p∗).
Sample Xi

t,r from a Gaussian approximation[4] to p∗∗,i about its
mode, i.e. sampleXi

t,r fromN (mi
t, Σ

i
IS) where

mi
t=mi

t(X
i
t−1, X

i
t,s, Yt) � min

Xt,r

Li(Xt,r), and

Σi
IS�[(∇2Li)(mi

t)]
−1, Li(Xt,r) � − log[p∗∗,i(Xt,r)] + const

∇2Li denotes the Hessian of Li. We refer to the above algorithm
as PF with Ef cient IS or PF-EIS. It is summarized in Algorithm 1.
For Xt,r = Xt, Algorithm 1 reduces to Doucet’s algorithm [4] and
ifXt,s = Xt, Algorithm 1 reduces to the original PF [1].

2.1. Unimodality of p∗∗,i(Xt,r) for LDSS Models
For the LDSS examples of the introduction, the state dynamics can
be written in the form of equations (1)-(4) of [8]. It is a generic form
of the second order motion model for nonEuclidean state spaces.
The quantity Ct (e.g. contour or temperature) has “velocity” (time
derivative), vt, split as vt = Bsvt,s + Brvt,r where Bs denotes
the effective basis directions and Br denotes a basis for the residual
space. vt,s, vt,r are the corresponding coef cients. For e.g., Bs can
be the dominant eigenvectors of the covariance of vt or it can be an
interpolation basis. Also, effective basis dimension, dim(vt,s) = K.

If in the LDSS model of [8], Ct belongs to a vector space, we
have g(Ct−1, vt) = vt and dim(Ct) = M . Then it simpli es to:

Ct=Ct−1 + Bsvt,s + Brvt,r,

vt,s=fs(vt−1,s) + νt,s, νt,s∼N (0, Σs), Σs=diag{Δp}
K
p=1

vt,r=fr(vt−1,r) + νt,r, νt,r∼N (0, Σr), Σr=diag{Δp}
M
p=K+1

p(Yt|Xt) = p(Yt|Ct) � α exp[−EYt(Ct)] (1)

Here Xt,s = vt,s and Xt,r = [vt,r, Ct]. For the purpose of sam-
pling,Xt,r = vt,r since Ct is a deterministic function of Ct−1, vt,s,
and vt,r . Also, for the above model, p(Xt,s|Xt−1) = p(Xt,s|Xt−1,s)
andmi

t = mi
t(X

i
t−1,r, X

i
t,s, Yt). We obtain suf cient conditions for

Assumption 1 for this model and extend them to the model of [8].

For the above model, we have p∗∗,i(Xt,r) = p∗∗,i(vt,r) =

p(vt,r|v
i
t−1,r, C

i
t−1, v

i
t,s, Yt) = p(vt,r|v

i
t−1,r, C̃

i
t , Yt).

Let fr(v
i
t−1,r) � f i

r and Ci
t−1 + Bsv

i
t,s � C̃i

t . Then,

p∗∗,i(vt,r)∝exp[−E(C̃i
t + Brvt,r)] N (vi

t,r; f
i
r, Σr) (2)

Thus Li(vt,r) = − log[p∗∗,i(vt,r)] + const is

Li(vt,r) = E(C̃i
t + Brvt,r) +

M−K∑
p=1

([vt,r − f i
r)]p)2

2Δp+K

(3)

where [.]p denotes the pth coordinate of a vector. Now, p∗∗,i will
be unimodal iff Li has a unique minimizer. The second term in
(3) is strongly convex with a unique minimizer at vt,r = f i

r . But
E(Ct) (and hence E as a function of vt,r) can have multiple min-
imizers since OL can be multimodal. If we can ensure that Σr is
small enough so that Li has a single minimizer that lies in the neigh-
borhood of f i

r = fr(v
i
t−1,r), we will be done. This idea leads to:

Theorem 1 (Unimodality) Denote fr(v
i
t−1,r) � f i

r and Ci
t−1 +

Bsv
i
t,s � C̃i

t . For the model of (1), p∗∗,i(vt,r) will be unimodal if
1. E is twice differentiable almost everywhere.
2. C̃i

t +Brf
i
r is close enough to a minimizer of E so that E(C)

is strongly convex in its neighborhood.
3. Δp+K , p = 1, 2, . . . M − K satisfy

inf
vt,r∈G

max
p=1,...M−K

(γp(vt,r) − Δp+K) > 0,

G � ∩M−K
p=1 (AK,p ∪ ZK,p) (4)

γp(vt,r)�

{
|[∇D]p|

|[∇E]p| , vt,r ∈ AK,p

0, vt,r ∈ ZK,p

(5)

∇E �BT
r ∇CE(C̃i

t + Brvt,r)

∇D�vt,r − f i
r (6)

AK,p �{vt,r ∈ Rc
K,LC : [∇D]p.[∇E]p < 0},

ZK,p �{vt,r ∈ Rc
K,LC : [∇E]p = 0 & [∇D]p = 0},

RK,LC �{vt,r ∈ R
M−K : C̃i

t + Brvt,r ∈ RLC}, (7)

where RLC ⊆ S = R
M is the largest contiguous region in

the neighborhood of C̃i
t + Brf

i
r which contains a minimizer

of E and where E(C) is convex. Also, |.| denotes absolute
value and [.]p denotes pth coordinate of a vector.
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RK,LC and the point vt 1,r
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Fig. 1. Computing Δ∗
K for Example 1 (M = 3,K = 1). We used α1 = 0.1, α2 = 0.4, a = 10, σ2

obs = 1, Δ1 = 5.4, Bs =
[0.64 − 0.56 0.53]′, Br = [0.73 0.66 − 0.18; −0.25 0.5 0.83]′ (we use MATLAB notation). Also, Ci

t−1 = [0 0 0]′, vi
t−1,r = [0 0]′,

vi
t−1,s = 0, Yt = [6.43 1.68 − 3.59 − 2.5 1.59 1.49]′ and vi

t,s = 2.9 (simulated from N (0, Δ1)). Col. 1: mesh plot of E as a
function of vt,r . Col. 2: RK,LC , note that the point f i

r = vi
t−1,r lies inside it. Col. 3,4,5,6: the regions constituting G, AK,1 ∩ AK,2,

ZK,1 ∩ AK,2, ZK,1 ∩ AK,2, ZK,1 ∩ ZK,2 along with the computed value ofΔ∗ in the 4 regions (4.84, 745.24, 226.12, 1678.36). The nal
value Δ∗

K is the minimum of these 4 values, i.e. we have Δ∗
K = 4.84. Col. 7: contours of [∇L]1 = 0 and [∇L]2 = 0 for L computed

with Δ2 = Δ3 = 0.9Δ∗
K . The contours have only one point of intersection (only one point where ∇L = 0). Col. 8: contours of of

[∇L]j = 0, j = 1, 2 forΔ2 = Δ3 = 1.1Δ∗
K . There are 3 intersection points (3 points where∇L = 0).

An easy to verify suf cient condition to ensure (4) holds is

max
p=1,...M−K

Δp+K < inf
vt,r∈G

max
p=1,...M−K

γp(vt,r) � Δ∗
K (8)

Proof: www.ece.iastate.edu/∼namrata/pfmt.full.pdf

Remark 1 If E(C) is Lipschitz, we will always get Δ∗
K > 0 and

hence we can always nd a Σr > 0 for which p∗∗,i is unimodal.
Corollary 1 For the LDSS model of [8], Theorem 1 applies with
the following modi cations: (a) Replace Brf

i
r by g(Brf

i
r) every-

where. (b) Rede ne∇E � BT
r ∇vg(Brvt,r)∇CE(C̃i

t+g(Brvt,r))

with (∇vg)i,j �
∂gj

∂vi
. (c) Directly de ne RK,LC ⊆ R

M−K as the
largest contiguous region in the neighborhood of f i

r where E(C̃i
t +

g(Brvt,r)) is convex as a function of vt,r .
Note, the above result is more general than that of [8].
2.2. Numerical Veri cation of Unimodality
When trying to verify (3) using numerical ( nite difference) compu-
tations of gradients and Hessians, 0 needs to be replaced by a small
number ε0 > 0, i.e. we need conditions to ensure |[∇L]p| > ε0 for
some p for all vt,r ∈ Rc

K,LC . To ensure |[∇L]p| > ε0 for some p
for all vt,r ∈ Rc

K,LC , the following two modi cations are needed:
rede ne ZK,p and γp(vt,r) as follows

ZK,p �{vt,r ∈ Rc
K,LC : |[∇E]p| < ε0, &[∇E]p.[∇D]p ≥ 0}

γp(vt,r)�

{
|[∇D]p|

ε0+|[∇E]p| , vt,r ∈ AK,p

|[∇D]p|

ε0−|[∇E]p| , vt,r ∈ ZK,p

Example 1 (ComputingΔ∗
K ) Consider tracking temperature (de-

noted Ct) atM locations. Temperature at each location is measured
using two types of sensors that have failure probabilities α1 and α2.
If the sensor fails it outputs a random number distributed according
to a pdf pf (y). We assume here that pf (y) = Unif(y;−a, a). If
the sensor is working, the measured temperature is the actual tem-
perature plus Gaussian noise. The noise is independent of the noise
at other sensors. Failure of all the 2M sensors are also independent.
Thus we have the following observation likelihood (OL):

p(Yt|Ct)=
M∏

p=1

p(Y 1
t,p, Y 2

t,p|Ct,p) = p(Y 1
t,p|Ct,p)p(Y 2

t,p|Ct,p)

p(Y j
t,p|Ct,p)=(1 − αj)N (Y j

t,p; Ct,p, σj
obs

2
) + αpf (Y j

t,p) (9)

The state dynamics follows (1), i.e. change in temperature over time
(vt) at the different sensor locations is assumed to be zero mean

and spatially correlated. The eigenvectors of the covariance of vt

are [Bs Br] and the eigenvalues are {Δp}. The coef cients along
Bs, Br , denoted vt,s, vt,r , are assumed to follow a random walk
model with fs(vs) = vs and fr(vr) = vr .

Consider M = 3 and K = 1 so that vt,r ∈ R
2. We need

to nd a condition on Δ2, Δ3 that ensures that assumption 1 holds.
Here G is a subset of the 2D plane and consists of 4 types of regions:
AK,1∩AK,2,ZK,1∩AK,2,AK,1∩ZK,2,ZK,1∩ZK,2. We show an
example computation ofΔ∗

K in Fig. 1 for which we gotΔ∗
K = 4.84.

3. PF-MT: PF WITH MODE TRACKER
LDSS problems very often have a small dimensional effective basis,
Xt,s, in which most of the state change occurs and a large dimen-
sional residual space,Xt,r, in which the variance of the state change
is small, i.e. trace(Σr) is small. Thus trace(Σi

IS) ≤ trace(Σr) will
also be small. When this is true, a valid approximation is to replace
importance sampling of Xi

t,r from N (mi
t, Σ

i
IS) (step 2 in Algo-

rithm 1) by deterministically setting Xi
t,r = mi

t. We call this the
Mode Tracking (MT) approximation since mi

t is the mode of p∗∗,i.
Another valid approximation, whenΣr is small, is to set Σi

IS = Σr .
This and the fact that Xi

t,r = mi
t makes the denominator of w̃i

t

constant (and hence it can be removed). The above modi cations,
called PF-MT, are summarized in Algorithm 2. Note, PF-MT (or
PF-EIS) can be made faster (mode computation becomes a least
squares problem) if one can approximate OL by a linear Gaussian
system, linearized about C̃i

t . This is motivated by (49) of [4].
Now, consider the model of (1). We show below that when

trace(Σr) is small, with high probability, there is little error in re-
placing a random sample fromN (mi

t, Σ
i
IS), bymi

t.
Theorem 2 (IS-MT) For (1), assume that conditions of Theorem
1 are satis ed. Let vi

t,r ∼ N (mi
t, Σ

i
IS). Then, vi

t,r converges
to mi

t in probability as trace(Σr) → 0, for almost all values of
vi

t−1,r, C
i
t−1, v

i
t,s, Yt.

Proof: www.ece.iastate.edu/∼namrata/pfmt.full.pdf
The MT approximation introduces some error in the estimate of

Xt,r (error decreases with decreasing spread of p∗∗,i). But it reduces
the PF dimension from dim(Xt) to dim(Xt,s) (huge reduction for
large dimensional problems), thus greatly improving the effective
particle size. For carefully chosen dimension of Xt,s, this results
in much smaller total error when the available number of particles,
N , is small. Note also, that for best performance, one may choose a
smaller dimensionalXt,r (larger dimensionalXt,s) for PF-MT than
that for PF-EIS, i.e. splitXt,r for PF-EIS intoXt,r,s andXt,r,r and
use the MT approximation only onXt,r,r.
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(a) Example 2 (M = 3,K = 1) (b) Example 3 (M = 10,K = 1)

Fig. 2. (a) Comparing RMSE of PF-EIS (black -�) with that of
PF-Doucet (red -*) & PF-Orig (magenta -o). RMSE is computed
by taking the square root of the average (over 30 simulations) of the
squared error norm between the true temperature values, Ct and the
tracked ones (PF estimate of E[Ct|Y1:t]). M = 3 and K = 1. (b)
Comparing RMSE (over 25 simulations) of PF-MT (blue -�) with
PF-D, PF-Orig, PF-EIS & PF-K dim (green -x).

4. SIMULATION RESULTS AND DISCUSSION
Example 2 Consider Example 1 with M = 3 sensor nodes and
K = Ksim = 1. Let sensors at locations K + 1 to M have zero
failure probability (new sensors) and that [Bs Br] = I . Thus OL is
multimodal only as a function of Ct,1:K . Because of the choice of
[Bs Br], Ct,1:K depends only on vt,s and hence OL is multimodal
only as a function of vt,s (and not vt,r). In fact E will be a convex
function of vt,r and hence Rc

K,LC will be empty. Thus Theorem
1 holds for K = Ksim = 1 with Δ∗

1 = ∞ and so PF-EIS can
be applied for any values of Σr . System parameters were σ2

obs =
1, pf = Unif(−100, 100), α1 = α2 = [0.1 0 0], Δ1 = 10,
Δ2 = Δ3 = 5. To demonstrate the need for PF-EIS over PF-Doucet
(PF-D), we ran a biased simulation, i.e. we used α1(1) = 0.99 &
p1

f = N (Ct/2, 0), for t ≤ 7 while simulating the data.
RMSEs of the tracked temperatures from their true value for this

system, obtained using using PF-EIS with K = Ksim = 1, K = 0
(PF-D [4]), and K = M (original-PF[1]) is shown in Fig. 2(a). As
can be seen, RMSE is smallest for PF-EIS.
Example 3 Consider Example 1 with M = 10 sensor nodes. All
sensors have nonzero failure probability;K = 1 and [Bs Br]was an
M × M orthonormal matrix (not I). The parameters were: σ2

obs =
5, pf = Unif(−10, 10); α1 = [0.4 09], α2 = [0.1 09], Bs =
[0.56 0.289]

′, Br = its orthogonal complement, Σs = 10, Σr = I9.
Here 09 denotes a vector 9 zeros. No biased simulation was run.

To track this system, a regular PF (PF-original, PF-D or PF-EIS)
will have to sample on M = 10 dimensions. But PF-MT utilizes
the fact that the variance in residual space, Σr , is much smaller than
Σs. It approximates vi

t,r by its posterior mode at each t (instead
of importance sampling for it). This way the importance sampling
dimension is only K = 3, but because of the MT step, the perfor-
mance is much better than just running a K-dim original PF (run the
PF only on the rstK dimensions and treat vt,r ≡ 0 for all t). Also,
for small number of particles, N , its effective particle size is much
better than that for either PF-EIS or PF-Original (M dim) and hence
error is much smaller. As can be seen from Fig. 2(b), both PF-K
dim and either of PF-D, PF-EIS or PF-Original perform much worse
than PF-MT. If N is allowed to increase, PF-EIS or PF-D have the
best performance (depending on amount of multimodality).

Note that M = 10 is a large enough dimensional state space if
reasonable accuracy is desired with as low as N = 50 particles. In

other practical scenarios (which are dif cult to run multiple Monte
Carlo runs of) such as contour tracking [10] or tracking temperature
in a wide area with large number of sensors, the state dimension can
be as large as 200 or 250 while one cannot use more than 50-100
particles (for computational reasons).

There are still some un-addressed issues for PF-MT. If all or
most particles [vi

t,s, v
i
t,r] stick to a wrong region somehow (because

of the strong prior term, this will happen only if there are a sequence
of bad observations), future particles of vi

t,s may get back because
of random sampling, but vi

t,r will take very long (again because of
strong prior term and no random sampling). This will result in loss of
track. This problem will be much lesser if the dynamics of vt,r is ei-
ther temporally independent or at least temporally stationary. Under
this assumption, one should be able to show convergence of PF-MT
as ε (used in Theorem 2) goes to zero. Temporal independence is a
valid model for problems where the state vector can be interpreted as
a “spatial signal” (e.g. temperature in space or contour tracking) and
the effective basis is velocity at a subsampled set of points. For such
problems, the state change (temperature change or contour deforma-
tion) is usually approximately bandlimited (spatially) at a frequency
much smaller than the sampling frequency of the sensors or the im-
age and so the value ofK (computed using Nyquist criterion for the
approximate bandwidth) is much smaller thanM [12].
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