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ABSTRACT

We present a new particle lter (PF) algorithm, which uses a mathe-
matical tool known as Galerkin’s projection method to generate the
proposal distribution. By de nition, Galerkin’s method is a numer-
ical approach to approximate the solution of a partial differential
equation. By leveraging this method with L2 theory and the FFT, this
new proposal is fundamentally different to various local lineariza-
tion or Kalman lter based proposals. We apply this algorithm to a
bearings-only tracking problem. As shown in the theory and indi-
cated by our simulations, this proposal renders more support from
the true posterior distribution, thereby signi cantly enhances the es-
timation accuracy compared to standard bootstrap lters. In addi-
tion, because of this improved proposal distribution, the new particle
lter can achieve a given level of performance with less sample size.
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1. INTRODUCTION

Bearings-only target tracking is a fundamental component of surveil-
lance, guidance or positioning systems, whose objective is to deter-
mine the target’s kinematics, such as locations, velocities, etc., based
on the angle-measurement history. Due to the inherent nonlineari-
ties in the observation model, bearings-only target tracking has be-
come a standard nonlinear ltering problem that receives intensive
investigations. Traditionally, various Kalman lter based tracking
techniques have been used. However, for many cases these methods
cannot provide satisfactory results. More recently, particle ltering
techniques have received increasing attention [1][2][3]. Bearing the
nature of sequential importance sampling and the Monte Carlo ap-
proach, particle ltering has emerged as a superior alternative to the
traditional tracking methods. The basic idea of the particle lter is to
approximate the pdf of the system state by a set of weighted samples
(called particles) generated from a proposal distribution. Within a
sequential framework, the particles and their weights are propagated
through the system and updated whenever the most recent measure-
ments are received. A particle lter involves sequential importance
sampling (SIS) and resampling steps. However, the performances
of these techniques are strongly in uenced by the choice of the pro-
posal distribution.

In this paper, we propose a new particle lter algorithm in which
the Galerkin’s projection method is used to generate the proposal
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distribution. Applying the Galerkin’s method to the nonlinear l-
tering problem has been reported in [4] [5]. The rationale behind
Galerkin’s method is to assume the state posterior distribution is in
L2 space. In this case, this distribution can be approximated by its
projection onto a nite set of orthogonal basis. At each iteration,
it only needs to update the projection on each basis to approximate
the true proposal distribution. In addition, by choosing a set of spe-
cial exponential basis, the projection can be approximated by the
FFT which is computationally ef cient to implement. Finally, we
use this approximated distribution as the proposal in our new PF al-
gorithm. This proposal does not require any local linearization of
the nonlinear system and does not have any Gaussian assumption of
the systems’ states when calculating the proposal, which differs fun-
damentally to various Kalman lter based PF algorithms in [6] [7]
[8]. Because of this improved proposal distribution, the new particle
lter can yield accurate estimations while using less particles.

2. PROPOSED PARTICLE FILTERING BASED ON
GALERKIN’S METHOD

In this section, we’ll present how Galerkin’s method [4] can be used
to generate the proposal distribution, and how it can be incorporated
into the particle lter framework. For the sake of completeness and
to facilitate our derivation, we brie y review the setup of nonlinear
ltering and particle lters in this section. Consider a nonlinear sys-
tem given as follows:

xt = f(xt−1) + vt−1, (1)
yt = h(xt) + nt, (2)

where xt and yt denote the hidden states and the observations of the
system at time t, respectively. Both f(·) and h(·) could be nonlinear
functions, and vt and nt denote the process and observation noises,
respectively. The objective is to estimate the posterior distribution
p(xt|y1:t) governed by Chapman-Kolmogorov equation and Bayes’
rule given below:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 , (3)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

. (4)

In a PF framework, the posterior distribution can be approximated
by a set of weighted points:

p(xt|y1:t) ≈
Ns∑
i=1

ω̃
(i)
t δ(xt − x

(i)
t ) ,
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where ω̃
(i)
t = ω

(i)
t

/ ∑Ns
j=1 ω

(j)
t is the normalized importance weight,

and ω
(i)
t is given as:

ω
(i)
t = ω

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

0:t−1,y1:t)
. (5)

Equation (5) is the particle weight update equation. Distributions
p(yt|x(i)

t ) and p(x
(i)
t |x(i)

t−1) represent the system’s likelihood and
the state transition prior, respectively. The particles (or the samples)
are drawn from a proposal distribution as x(i)

t ∼ q(xt|x(i)
0:t−1,y0:t).

In a standard PF algorithm, i.e. the bootstrap lter, the transition
prior p(x

(i)
t |x(i)

t−1) is used as the proposal distribution. This algo-
rithm is easy to implement, but its proposal does not include the
most recent measurement information, which may cause the lter to
diverge from the true target trajectory, especially when the system is
highly nonlinear [1]. Designing a proposal is a challenging task of
current research, and it’s also the topic of this paper. A good proposal
needs to have a strong support from the true posterior distribution,
and should be easy to sample from. In the following subsections,
we’ll show that Galerkin method can be used to generate the better
proposal for particle lters.

2.1. Generating Proposal Using Galerkin’s Method

Galerkin’s method is a numerical approach to approximate the solu-
tion of a partial differential equation (PDE) [4][5]. Let P(x, t) = 0
denotes a PDE, which is a function of both temporal variable t and
spatial variable x. The basic idea of Galerkin’s method is to assume
that p(x, t) is the solution of the above PDE, and it is in the L2 space,
such that it can be decomposed by the following equation:

p(x, t) =

∞∑
l=0

εl(t)φl(x) , (6)

where {φl(x)}∞l=0 is a set of complete orthogonal basis of the L2

space and εl(t) is the projection of p(x, t) onto basis φl(x) at time t
de ned by the inner product〈p(x, t), φl(x)〉 as:

〈p(x, t), φl(x)〉 =

∫
p(x, t)φl(x)∗dx . (7)

Our objective is to nd an approximation of p(x, t), denoted as
p̂(x, t), such that

p̂(x, t) =

N−1∑
l=0

cl(t)φl(x) . (8)

Note that the approximation error arises from the replacement of
in nite basis with a set of nite orthogonal basis. The projections
cl(t), l = 0, · · · , N−1, are the values to be determined. Having this
setup, we can project P(x, t) onto the subspace span{φl(x)}N−1

l=0

as:
〈P(x, t), φl(x)〉 = 0, l = 0, · · · , N − 1 . (9)

By doing this, we convert solving the PDE into solving N ordinary
differential equations (ODE). Next we apply this method to the non-
linear ltering problem de ned previously.

First we assume p(xt|y1:t−1) =
∑N−1

l=0 c̃l(t)φl, where c̃l(t)
will be determined later. For simpli cation of notations, we drop

the variable x. Then we apply Galerkin’s method to equation (4) by
projecting it onto span{φl(x)}N−1

l=0 as:

〈p(xt|y1:t), φk〉 =

N−1∑
l=0

cl(t)〈φl, φk〉

=

∑N−1
l=0 c̃l(t)〈p(yt|xt)φl, φk〉∑N−1

l=0 c̃l(t)〈p(yt|xt), φ∗
l 〉

(10)

where k = 0, · · · , N −1. For simpli cation, the above equation can
be written in a matrix form as:

C(t) =
ΥtC̃(t)

υT
t C̃(t)

(11)

where Υt is a N × N matrix with the element at kth row and lth

column given by [Υt]k,l = 〈p(yt|xt)φl, φk〉. The variables C(t),
C̃(t) and υt are N × 1 vectors, with [υt]l = 〈p(yt|xt), φ

∗
l 〉. Now

we choose the exponential basis as φl(x) = 1√
b−a

exp
(
j2πl x−a

b−a

)
,

where a and b are the integral limits. It has been shown in [4] that
by using this set of basis the inner product can be approximated by
FFT as follows:

⎡
⎢⎣

〈p(x), φ0〉
...

〈p(x), φN−1〉

⎤
⎥⎦ ≈

√
b − a

N
FFT[p(x)]

⎡
⎢⎣

〈p(x), φ∗
0〉

...
〈p(x), φ∗

N−1〉

⎤
⎥⎦ ≈ √

b − a IFFT[p(x)] ,

see [4] [5] for details. Then, equation (11) can be approximated by
using FFT as follows:

[Υt]l =(
√

b − a/N) FFT [p(yt|xt) φl] (12)

υt =
√

b − a IFFT [p(yt|xt)] . (13)

To evaluate c̃l(t), we apply the Galerkin’s method in a similar way
to equation (3). Then we have:

c̃l(t)≈(
√

b − a/N)IFFTl

[
cl(t − 1)FFTl[p(xt|xt−1)]

]
, (14)

where the FFTl[·] represents the lth bin of FFT of the argument.
In addition, c̃l(t) can also be calculated by:

C̃(t) = FFT
[√

b − a · p(xt|xt−1) IFFT[C(t − 1)]
]

. (15)

Moreover, the prediction distribution and posterior distribution can
be calculated by:

p(xt|y1:t−1) ≈ (N/
√

b − a) IFFT[C̃(t)] (16)

p(xt|y1:t) ≈ (N/
√

b − a) IFFT[C(t)] . (17)

As a summary, in order to approximate the posterior distribution
p(xt|y1:t), we only need to update the vectorC(t) at each iteration.
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2.2. Proposed New PF Algorithm

In this section, we incorporate Galerkin’s method within the particle
lter framework. More speci cally, at each iteration, we use C̃(t)
and C(t) to approximate the posterior distribution leveraging the
IFFT de ned in (17). Then draw particles from this approximated
distribution. After that, the particles’ weights will be evaluated. The
nal step is the resampling and update stage. Since the proposal is
generated by projecting the true posterior distribution onto a sub-
space of L2 space, the accuracy of the proposal is guaranteed by
choosing appropriate the number of basis. As indicated in our sim-
ulation, using a limited number of basis is good enough to gener-
ate accurate proposal which in turn signi cantly reduces the number
particles used to achieve a given level of performance. The detailed
algorithm is summarized in as follows:

The Galerkin Method Based PF algorithm:
• Sequential Importance Sampling (SIS) Step:

– Calculate the parameters C̃(t) andC(t) using (12)
to (14) or (15);

– Generate the proposal distribution using (17);
– Sample from the proposal distribution according
to

x
(i)
t ∼ q(x

(i)
t |x(i)

0:t−1, y1:t)

≈p(xt|y1:t)

≈(N/
√

b − a) IFFT[C(t)];

– Evaluate and normalize the importance weights
according to (5);

• Resampling Step: Generate a new set of particles xi�
t

from x
(i)
t by sampling Ns times the approximate distri-

bution of so that Pr
(
xi�

t = x
(j)
t

)
= ω̃

(j)
t ;

• Output and Update Step: Approximate xt by
x̂t ≈ 1

Ns

∑Ns
i=1 xi�(t) and update the proposal.

3. SIMULATIONS RESULTS

In this section, we apply the proposed particle lter to a single sensor
bearings-only tracking problem. Bearings-only tracking has many
practical applications, such as passive sonar applications and aircraft
surveillance. Moreover, this is a standard nonlinear problem that has
been intensively investigated in current literature [2][3]. The system
state of the target is represented by a vector given as:

Xt =
[

x(t) y(t) vx(t) vy(t)
]T

. (18)

The variables (xt, yt) are the target location in a Cartesian coor-
dinates. The variables vx(t) and vy(t) denote the target velocities
along the x-axis and y-axis, respectively. The discrete time model
for the kinematics of a non-maneuvering target is given as [3]:

Xt = F · Xt−1 + Γ · Vt−1 , (19)

where

F =

⎡
⎢⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎦ Γ =

⎡
⎢⎢⎣

T 2/2 0
0 T 2/2
T 0
0 T

⎤
⎥⎥⎦ ,

and T is the sampling rate. The process noise Vt is a 2-by-1 noise
vector with a distributionVt ∼ N (0,Qv), where

Qv =

[
σ2

v 0
0 σ2

v

]
.

The measurement of the tracking system is the angle between the
observation platform (the coordinate origin) and the location of the
target, which is given as:

z(k) = arctan

[
x(t)

y(t)

]
+ n(t) (20)

where the scalar variable n(t) denotes the measurement noise which
is distributed as n ∼ N (0, σ2

n). Equations (19) and (20) consti-
tute the state space model for the bearings-only tracking problem, in
which the observation model contains nonlinearities. In addition, the
velocities vx(t) and vy(t) are the hidden states of the system, which
do not have direct measurements.

In this section, we provide two tracking examples to test the per-
formance of the proposed particle lter tracking algorithm. In the
rst example, the target has a approximate rectilinear motion. While
in the second example, the target makes a maneuver operation. In
addition, for the purpose of comparison, an extended Kalman l-
ter (EKF) and a bootstrap lter (a PF algorithm using state tran-
sition prior as proposal) are also implemented. In the rst exam-
ple, the new PF algorithm uses 100 basis and 200 particles, i.e.
N = 100, Ns = 200. While the bootstrap lter uses the sam-
ple size Ns = 200, 500, 1000, 2000, respectively. To evaluate the
tracking performance of these lters, 200 Monto Carlo runs are im-
plemented. In addition, the root mean square error (RMSE) along
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Fig. 1. The estimation RMSE vs. time for both x-axis and y-axis: the
solid line( −−) denotes the RMSE of the proposed PF; the dashed
line (−−) denotes the RMSE of the bootstrap lter with 200 parti-
cles; the dotted line (. . .) represents the RMSE of the EKF.

both x-axis and y-axis are used as performance indices. The tracking
results of the three lters are shown in Figure 1, Figure 2 and Table
1. In Figure 1, the RMSE’s vs. time from the 200 Monte Carlo run
are plotted. It is obvious from this gure, the new PF gives much
more accurate estimation compared to the bootstrap lter using the
same sample size. In addition, the tracking results from a typical re-
alization is shown in Figure 2. As shown in this gure, although the
bootstrap lter can following the general direction of the target, it
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fails to detect small maneuvering operations made by the target. On
the other hand, due to the improved proposal distribution, the new
proposal PF can keep a close track throughout the whole simulation.
Next, for a comparison, bootstrap lters with different sample size
are implemented 200 times to generate the performance index. Ta-
ble 1. summarizes the mean of and the variance of RMSE’s for each
bootstrap lter. It is observed from this table that even a bootstrap
with a sample size of 2000 still cannot achieve the estimation accu-
racy of the new proposed PF algorithm.
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Fig. 2. The rst example: the line with a plus sign (−+−) represents
the true trajectory; the line with a triangle (−�−) represents the es-
timated trajectory from the new PF; (−•−) represents the tracking
results from EKF; (−∗−) represents the tracking results from boot-
strap lter. As seen, the our proposed PF method has the closed
track.

Table 1. The comparison of the new PF with the Bootstrap lter
Filter (Sample Size) Mean RMSE Var RMSE

ex ey Var ex Var ey

Bootstrap (200) 4.8312 4.0215 6.7798 5.7492
Bootstrap (5000) 4.0599 3.8300 4.0483 6.0063
Bootstrap (1000) 3.6181 3.6961 3.3728 5.8839
Bootstrap (2000) 3.6199 3.6489 3.3991 6.0310
New PF (200) 1.1391 1.1554 0.0535 0.0576

In the second example, we use the three lters to track a target
which makes a sharp turn approximately at the location (x=72,y=6).
This kind of target is always referred as a maneuvering target. Track-
ing a maneuvering target is more challenging than tracking a target
with constant velocities. Traditionally, multiple model methods are
used in the case. However, to test the accuracy and robustness of our
new PF, we still use the single constant velocity model given before.
The tracking result of one typical realization is shown in Figure 3.
As indicated in this gure, both the EKF and the bootstrap lter di-
verges from the true trajectory when the target makes the sharp turn.
However, the new PF still can keep a close track.

4. CONCLUSION

In this paper, we proposal a new PF algorithm which uses Galerkin’s
projection method to generate a proposal distribution. This method
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Fig. 3. The second example: The line with a plus sign (−+−) represents
the true trajectory; the line with a triangle (−�−) represents the
estimated trajectory from the new PF; (−•−) represents the tracking
results from EKF; (−∗−) represents the tracking results from bootstrap
lter with 500 particles. As seen, the our proposed PF method has
the closest track.

renders a proposal which has more support from true posterior distri-
bution. This algorithm is implemented to two tracking examples. As
indicated by the simulation results, this lter outperforms the stan-
dard bootstrap lter, can achieve a given level of performance with
fewer samples.
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