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ABSTRACT

Cost-reference particle filtering (CRPF) is a methodology for
recursive estimation of hidden states of dynamic systems. It is
used for tracking nonlinear states when probabilistic assumptions
about the state and observations noises are not made. Recently,
we have proposed a CRPF algorithm for systems with conditionally
linear states that combines the use of Kalman filtering for the linear
states and CRPF for the nonlinear states. We have shown that this
combined method yields improved results over the standard CRPF.
In this paper, we further extend that approach by relaxing some
of the assumptions about the noises in the system. As a result,
the only statistical assumption that remains is that the noises are
stationary and zero mean. We demonstrate the performance of
the proposed method by computer simulations and compare it with
standard CRPF, standard particle filtering (SPF), and marginalized
particle filtering (MPF).

Index Terms— Cost-reference particle filtering, Kalman
filtering, Rao-Blackwellization

1. INTRODUCTION

Many problems in signal processing can be stated in the form of a
dynamic system

xt = f(xt−1) + ut (1)

yt = h(xt) + vt, (2)

where the subscript t represents time index, xt is the system state
vector, yt is a vector of measurements, ut and vt are state and
observation noises, respectively, f(·) is the state transition function
and h(·) is the observation function. The standard problem is to
recursively estimate the unknown state xt from the noise-corrupted
observations yt. From a Bayesian point of view, the objective is to
estimate the a posteriori density of the state p(xt|y1:t) (the notation
y1:t means the set of observations {y1, y2, · · · , yt}).

Cost-reference particle filtering (CRPF) [1] is a methodology
that is implemented in a similar manner as standard particle filtering
(SPF). CRPF is also based on the use of particles drawn from the
space of the unknown states, but instead of weights that correspond
to probability masses (as in SPF), they have costs that quantify the
values of the particles they are associated with. The cost function
used by the filter is user-defined. Amajor difference between the two
methods is that CRPF does not require any probability distribution
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assumptions about the state or observation noise processes. A
comparison of CRPF and SPF has already been discussed and some
possible simplifications of CRPF have been proposed in [2].

There are dynamic systems where some of the state variables
are conditionally linear on the remaining (nonlinear) states. It is
well-known that for linear systems the Kalman filtering method is
optimal [3]. This allows for improvements of the particle filtering
method when it is applied on a system with conditionally linear
states. The method that exploits the linear substructure is known
as Rao-Blackwellized (RB) particle filter [4]. Rao-Blackwellization
is a statistical procedure that is used to reduce the variance of Monte
Carlo importance sampling [5]. The RB particle filtering, also
known as marginalized particle filtering (MPF) [6], is a combination
of the SPF and Kalman filtering.

The idea of Rao-Blackwellization has also been adopted for
CRPF [7]. There one exploits the special structure of the dynamic
system model by combining CRPF with Kalman filtering. Similarly
to the MPF, the standard CRPF is carried out for the nonlinear
states, whereas the linear states are estimated by Kalman filtering.
Therefore, the conditionally linear states are estimated optimally. In
[7], the combined CRPF with Kalman filtering requires knowledge
of the means of the noises and some of the second moments of the
noises in the system. In this paper, we remove the assumption of
knowing the second moments of the noises. In absence of their
values, we estimate them simultaneously with the rest of the states
by following [8].

The rest of the paper is organized as follows. The problem is
formulated in Section 2. In Section 3, we briefly review the RB
scheme and the basics of the CRPF algorithm. In Section 4, the
proposed combination of CRPF and Kalman filtering is discussed.
Simulation results are shown in Section 5. Finally, conclusions are
given in Section 6.

2. PROBLEM STATEMENT

For studying systems with conditional linearity, (1)-(2) can be
presented as
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where fn
t (·) and f l

t(·) are nonlinear state transition functions; An
t

and Al
t are matrices, whose entries may depend on the nonlinear

states; un
t and ul

t are state noise vectors; h
n
t (·) is the nonlinear

observation function; and Bt is another matrix whose entries may
depend on the nonlinear states. Unlike in the assumptions for
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SPF, the noise distributions of ut and vt here are unknown. We
only assume that the noises have zero means. Note that in [7], an
additional assumption was made about some of the second moments
of the noises in the dynamic system.

3. BACKGROUND

3.1. Rao-Blackwellization Algorithm

Rao-Blackwellization is a marginalization technique used for
reducing the variance of estimates. The idea is to use marginalization
whenever possible and thereby reduce the dimension of the space of
the unknowns. Recall that the objective of particle filtering is to
approximate the a posteriori density p(xt|y1:t). For the system (3)-
(5), we have

p(xt|y1:t) = p(xl
t|xn

t ,y1:t)p(x
n
t |y1:t), (6)

where p(xl
t|xn

t ,y1:t) is a Gaussian density. It can be shown
that this density can be tracked by Kalman filtering. The second
factor, p(xn

t |y1:t), is usually intractable, and one approximates it
by particle filtering. This idea was exploited in [7], where the
conditionally linear states were estimated by Kalman filtering. In
the next subsection we briefly review CRPF.

3.2. Cost-Reference Particle Filtering

CRPF is a filtering method that does not rely on probabilistic
information. The objective of CRPF is the online estimation of
the system states from available observations. SPF uses particles
and associated weights to approximate the posterior distribution of
the states. CRPF also represents the unknown states by a discrete
random measure that contains particles, but instead of weights it
associates costs with the particles. The costs provide a measure
of quality of the particles in that lower cost-values indicate better
particles, that is, particles closer to the true value of the state and
vice versa. Thus, the random measure is defined by

χt =
{
x
(i)
0:t, C(i)

t

}M

i=1
(7)

where x
(i)
0:t is the i−th particle stream, C(i)

t is the corresponding cost,
and M is the total number of particles. The cost function has a
recursive additive structure, i.e.,

Ct = λCt−1 +ΔCt(xt|yt) (8)

where λ is a forgetting factor (0 ≤ λ ≤ 1), and ΔC(xt|yt) is an
incremental cost. The forgetting factor λ controls the amount of
contribution to the cost function by old particles. The incremental
cost at time t depends only on the particles and observation at time
instant t.

Another function, called risk, is introduced as a measure of
adequacy of the state at time t − 1 given the new observation yt.
It is given by

Rt = λCt−1 +Rt(xt−1|yt) (9)

where Rt(xt−1|yt) = ΔCt(f(xt−1)|yt). The risk function can be
viewed as a prediction of the cost increment, which can be obtained
before xt is actually propagated.

One important issue of CRPF (as in SPF) is the resampling of
the particles. In the original CRPF, it was proposed that a probability
mass function (pmf) is generated according to

πt ∼ μ(Ct) (10)

where μ : R → [0,+∞) is a monotonically decreasing function.
This function assigns high weights to low cost particles and low
weights to high cost particles. Once, the pmf is obtained, one can
resort to a standard resampling procedure. Recently, a simplified
CRPF was proposed which replaces the standard resampling by a
sorting scheme. The justification for this is that since CRPF does
not approximate distributions, the selection of promising particles
can be achieved with simpler schemes. For example, at time instant
t, we simply compute and sort the risks, remove the M − (M/N)
worst particles (N = 2, 3, ...), and replicate the surviving particles
N times. By doing this, we avoid calculating the pmf and drawing
samples from the so obtained pmf.

Finally, CRPF also requires generation of new of particles.
In CRPF, we propagate particles using an appropriate distribution,
usually a Gaussian probability density function (pdf) (other pdfs can
also be employed).

In summary, CRPF is implemented as follows. Particles are first
initialized and assigned zero costs and then at each time instant t, the
following steps are executed:

1. Particle selection: Compute the risks according to (9) for
i = 1, 2, · · · ,M . The particles are resampled according to
some pmf, or sorted, in order to keep the promising particles
(the ones with low costs). The obtained particle set is

χ̃t−1 =
{
x̃
(i)
t−1, C̃(i)

t−1
}M

i=1
.

2. Particle propagation: Propagate each particle by

x
(i)
t ∼ pt(xt|x̃(i)t−1)

where pt(·) is an appropriate pdf for which E(xt|x̃(i)t−1) =

f(x̃
(i)
t−1). Then the corresponding costs are evaluated by

C(i)
t = λC̃(i)

t−1 +ΔCt(x
(i)
t |yt).

3. State estimation: One possible estimate is the mean-square
error (MSE) estimate. Compute the pmfs corresponding to
the costs by

π
(i)
t ∝ μ(C(i)

t ).

With this pmf, we can compute the state estimate as

x̂t =
M∑
i=1

x
(i)
t π

(i)
t .

Other estimation methods that do not require calculation of
the pmf can also be used.

4. CRPF COMBINEDWITH KALMAN FILTERING

For the system (3)-(5), we propose an algorithm that combines CRPF
with Kalman filtering. With the proposed method, we estimate the
nonlinear states with CRPF and the conditionally linear ones with
Kalman filtering. We only assume that the noise processes have
zero-means.

First, let a linear system be given by

xt = Atxt−1 + ut

yt = Btxt + vt,

where the means of the noises are zero, and the covariance matrices
of ut and vt are Qu and Qv , respectively. Then the standard
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Kalman filter updates the state vector and the error covariance matrix
sequentially according to

State propagation:

{
x̂t|t−1 = Atx̂t−1
Pt|t−1 = AtPt−1A�t +Qu

(11)

Kalman gain:Kt = Pt|t−1B
�
t

(
BtPt|t−1B

�
t +Qv

)−1
(12)

State update:

{
x̂t = x̂t|t−1 +Kt(yt − Btx̂t|t−1)
Pt = (I − KtBt)Pt|t−1.

(13)

It is clear that the filter requires the knowledge of the noise
covariancesQu andQv . However, a modified version of the Kalman
filter can be used where the unknown statistical variables can be
estimated simultaneously with the system state and error covariance
matrix [8]. We refer to this methodology as to adaptive Kalman
filtering (AKF).

An unbiased estimator of Qv is obtained by first numerically
estimating the covariance of the observation residual,

Srt =
1

t − 1
t∑

k=1

(rk − r̄)(rk − r̄)�, (14)

where rt = yt − Btx̂t|t−1, and r̄ = 1
t

∑t
k=1 rk, and then

estimatingQv by

Q̂v,t = Srt − 1

t

t∑
k=1

BkPk|k−1B
�
k . (15)

Similarly, the state noise covariance can be estimated by

Q̂u,t = Sqt − 1

t

t∑
k=1

(AkPk−1A
�
k − Pk) (16)

Sqt =
1

t − 1
t∑

k=1

(qk − q̄)(qk − q̄)�, (17)

where qt = x̂t − Atx̂t−1, and q̄ = 1
t

∑t
k=1 qk.

AKF starts with some initial value of x0, P0, Q̂u,0, Q̂v,0, Sr0 ,
S′r0 , Sq0 , and S

′
q0 , updates them recursively, and substitutes them

into (11)-(13). The steps of AKF are outlined in Table 1.
Now we return to our system (3)-(5). As already suggested,

we apply CRPF for estimating the nonlinear states, and since we
do not know the noise covariances, we use AKF for estimating the
conditionally linear states. The new algorithm can be implemented
as follows:

1. Particle selection: Predict the states according to

x̆
n,(i)
t = fn

t (x
n,(i)
t−1 ) +An

t (x
n,(i)
t−1 )x

l,(i)
t−1

x̆
l,(i)
t = f l

t(x
n,(i)
t−1 ) +Al

t(x
n,(i)
t−1 )x

l,(i)
t−1 ,

and compute the risks of the particles x̆
(i)
t by (9). Sort all the

risks in ascending order, and select the first M/N particles
(those with lowest risks) and replicate them N times; discard
the rest of the particles. Let the new set of particles be denoted

by x̃
(i)
t−1.

2. Particle propagation of nonlinear states: Propagate the
nonlinear states by using an appropriate pdf, for example, a
Gaussian,

x
n,(i)
t ∼ pt(x

n
t |x̃(i)t−1).

State propagation:
x̂t|t−1 = Atx̂t−1
Pt|t−1 = AtPt−1A�t + Q̂u,t−1

Observation noise:
rt = yt − Btx̂t|t−1, r̄t =

t−1
t
r̄t−1 + 1

t
rt

Srt =
t−1
t
Srt−1 +

1
t
(rt − r̄t)(rt − r̄t)

�

S′rt =
t−1
t
S′rt−1 +

1
t
BtPt|t−1B

�
t

Q̂v,t = Srt − S′rt
Kalman gain:

Kt = Pt|t−1B
�
t

(
BtPt|t−1B

�
t + Q̂v,t

)−1
State update:

x̂t = x̂t|t−1 +Ktrt
Pt = (I − KtBt)Pt|t−1

State noise:
qt = x̂t − Atx̂t−1, q̄t =

t−1
t
q̄t−1 + 1

t
qt

Sqt =
t−1
t
Sqt−1 +

1
t
(qt − q̄t)(qt − q̄t)

�

S′qt =
t−1
t
S′qt−1 +

1
t

(
AtPt−1A�t − Pt

)
Q̂t = Sqt − S′qt

Table 1. Adaptive Kalman filtering

3. Estimation of the linear states: Given the nonlinear state
x
n,(i)
t , estimate the linear states x

l,(i)
t by AKF (Table 1).

4. Estimation of the state: First compute the costs of particles
C(i)
t , then obtain the weights of particles by π

(i)
t ∝ μ(C(i)

t ).
The MSE estimate is obtained by

x̂t =
M∑
i=1

x
(i)
t π

(i)
t .

5. COMPUTER SIMULATIONS

In this section, we present computer simulations that illustrate the
validity of our proposed method. We considered a four-dimensional
state xt = [x1,t x2,t x3,t x4,t]

�, which followed a random walk
scheme. Given x4,t, the observation vector yt was a linear function
of the first three components [x1,t x2,t x3,t], i.e.,

xt = xt−1 + ut⎡
⎢⎣

y1,t
y2,t
y3,t
y4,t

⎤
⎥⎦ =

⎡
⎢⎢⎣

x1,tx4,t
x2,tx4,t
x3,tx4,t
x34,t

⎤
⎥⎥⎦ + vt,

where ut and vt were independent Gaussian noise processes.
Therefore, the state was considered to contain a nonlinear part,
xn
t = [x4,t], and a linear part, x

l
t = [x1,t x2,t x3,t]

�. In the
simulations, we set T = 200, ut ∼ N (0,Qu), vt ∼ N (0,Qv),
withQu = 4I, andQv = diag{4, 4, 4, 9}.

We applied the standard CRPF and the proposed combination of
CRPF and AKF. The incremental cost function was specified by

ΔCt(xt|yt) =
∥∥∥yt − ht(x

n
t )− Bt(x

n
t )x

l
t

∥∥∥2

and λ = 0. Once the risks of the particles were computed, they
were ranked in ascending order, and one half of the particles with
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lowest risks were replicated (N = 2). The surviving particles were
propagated according to

x
(i)
t ∼ N

(
x̃
(i)
t−1, σ

2
0I
)

where σ20 can be estimated as proposed in [1]. Finally, the states
were estimated by computing a pmf based on the obtained cost

π
(i)
t ∝ μ(C(i)

t ) =
1

(C(i)
t −mink(C(k)

t ) + δ)β
,

where δ = 0.1 and β = 2.
For comparison purposes, we also implemented the SPF and

the MPF as proposed in [6]. Table 2 summarizes the details of
the MPF algorithm. All the filters were run with M = 100
particles. The performance of the algorithms was measured in terms

Initialization
For i = 1 · · ·M
x
n,(i)
0 ∼ p0(x

n
0 ), set {xl,(i)

0 ,P
(i)
0 }

Recursive update
For t = 1 to T , for i = 1 · · ·M
Nonlinear prediction x̃

(i)
t ∼ p(xn

t |x(i)t−1,yt−1)
Linear prediction

x̃
l,(i)

t|t−1 = f l
t(x
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t−1 ) +A
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t x
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t−1
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M

}M

i=1
Linear update by Kalman filter

K
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t P
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P
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(i)

t|t−1 − K
(i)
t B

(i)
t P

(i)

t|t−1
State estimation
x̂t =

∑M
i=1 x

(i)
t w

(i)
t

Table 2. Marginalized particle filtering algorithm.

of the root mean square (RMS) errors of both the nonlinear and
conditionally linear states. The RMSwas obtained by averaging over
500 independent simulation trials, i.e.,

RMSn
t =

√√√√ 1

500

500∑
k=1

‖x̂n
k,t − xn

k,t‖2,

RMSl
t =

√√√√ 1

500

500∑
k=1

‖x̂l
k,t − xl

k,t‖2,

where xk,t was the true state at time t in the k-th run, and x̂k,t was
the corresponding estimate obtained by the filter.

Figure 1 shows the RMS errors of all the compared methods. It
is clear from the plots that the performances of the proposed CRPF
(noted as K-CRPF in the figure) and the MPF were much better than
the original CRPF and SPF for the conditionally linear state. All
the methods, however, performed similarly for the nonlinear state. It
is also important to note that the newly proposed CRPF had similar
performance as the MPF.
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Fig. 1. RMS error comparison

6. CONCLUSIONS

In this paper we present a tracking method for dynamic systems
with conditionally linear states that combines cost-reference particle
filtering and adaptive Kalman filtering. The new method does not
make any assumptions about the noises in the system except that
they are zero mean and stationary. The proposed method resembles
the Rao-Blackwellized particle filter from standard particle filtering
theory. Simulation results show its improved performance over the
standard cost-reference particle filter.
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[7] P. M. Djurić andM. F. Bugallo, “Cost-reference particle filtering
for dynamic systems with nonlinear and conditionally linear
states,” in Proceedings of the Nonlinear Statistical Signal
Processing Workshop, Cambridge, UK, 2006.

[8] K. A. Myers and B. D. Tapley, “Adaptive sequential estimation
with unknown noise statistics,” IEEE Transactions on Automatic
Control, vol. 4, pp. 520–523, August 1976.

III  1188


